一种无差分保守相场晶格玻尔兹曼方法

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chunheng Zhao , Saumil Patel , Taehun Lee
{"title":"一种无差分保守相场晶格玻尔兹曼方法","authors":"Chunheng Zhao ,&nbsp;Saumil Patel ,&nbsp;Taehun Lee","doi":"10.1016/j.compfluid.2025.106674","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an innovative difference-free scheme that combines the one-fluid Lattice Boltzmann method (LBM) with the conservative phase-field (CPF) LBM to effectively solve large-scale two-phase fluid flow problems. The difference-free scheme enables the derivation of the derivative of the order parameter and the normal vector through the moments of the particle distribution function (PDF). We further incorporate the surface tension force in a continuous surface stress form into the momentum equations by modifying the equilibrium PDF to eliminate the divergence operator. Consequently, the entire computation process, executed without any inter-grid finite difference formulation, demonstrates improved efficiency, making it an ideal choice for high-performance computing applications. We conduct simulations of a single static droplet to evaluate the intensity of spurious currents and assess the accuracy of the scheme. We then introduce the density or viscosity ratio and apply an external body force to model the Rayleigh–Taylor instability and the behavior of a single rising bubble, respectively. Finally, we employ our method to study the phenomenon of a single bubble breaking up in a Taylor–Green vortex. The comparison between the difference-free scheme and the finite difference method demonstrates the scheme’s capability to yield accurate results. Furthermore, based on the performance evaluation, the current scheme exhibits an impressive 47% increase in efficiency compared to the previous method.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"298 ","pages":"Article 106674"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A difference-free conservative phase-field Lattice Boltzmann method\",\"authors\":\"Chunheng Zhao ,&nbsp;Saumil Patel ,&nbsp;Taehun Lee\",\"doi\":\"10.1016/j.compfluid.2025.106674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose an innovative difference-free scheme that combines the one-fluid Lattice Boltzmann method (LBM) with the conservative phase-field (CPF) LBM to effectively solve large-scale two-phase fluid flow problems. The difference-free scheme enables the derivation of the derivative of the order parameter and the normal vector through the moments of the particle distribution function (PDF). We further incorporate the surface tension force in a continuous surface stress form into the momentum equations by modifying the equilibrium PDF to eliminate the divergence operator. Consequently, the entire computation process, executed without any inter-grid finite difference formulation, demonstrates improved efficiency, making it an ideal choice for high-performance computing applications. We conduct simulations of a single static droplet to evaluate the intensity of spurious currents and assess the accuracy of the scheme. We then introduce the density or viscosity ratio and apply an external body force to model the Rayleigh–Taylor instability and the behavior of a single rising bubble, respectively. Finally, we employ our method to study the phenomenon of a single bubble breaking up in a Taylor–Green vortex. The comparison between the difference-free scheme and the finite difference method demonstrates the scheme’s capability to yield accurate results. Furthermore, based on the performance evaluation, the current scheme exhibits an impressive 47% increase in efficiency compared to the previous method.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"298 \",\"pages\":\"Article 106674\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025001343\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001343","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种将单流体晶格玻尔兹曼方法(LBM)与保守相场方法(CPF)相场方法(LBM)相结合的创新无差分格式,以有效地解决大规模两相流体流动问题。无差分格式可以通过粒子分布函数(PDF)的矩来推导阶参数和法向量的导数。通过修改平衡PDF以消除散度算子,我们进一步将连续表面应力形式的表面张力纳入动量方程。因此,整个计算过程无需任何网格间有限差分公式即可执行,从而提高了效率,使其成为高性能计算应用的理想选择。我们对单个静态液滴进行了模拟,以评估虚假电流的强度并评估该方案的准确性。然后,我们引入密度或粘度比,并应用外力分别模拟瑞利-泰勒不稳定性和单个上升气泡的行为。最后,我们用我们的方法研究了泰勒-格林涡旋中单个气泡的破裂现象。将无差分格式与有限差分方法进行了比较,证明了该格式能够得到准确的结果。此外,基于性能评估,与之前的方法相比,当前方案的效率提高了47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A difference-free conservative phase-field Lattice Boltzmann method
We propose an innovative difference-free scheme that combines the one-fluid Lattice Boltzmann method (LBM) with the conservative phase-field (CPF) LBM to effectively solve large-scale two-phase fluid flow problems. The difference-free scheme enables the derivation of the derivative of the order parameter and the normal vector through the moments of the particle distribution function (PDF). We further incorporate the surface tension force in a continuous surface stress form into the momentum equations by modifying the equilibrium PDF to eliminate the divergence operator. Consequently, the entire computation process, executed without any inter-grid finite difference formulation, demonstrates improved efficiency, making it an ideal choice for high-performance computing applications. We conduct simulations of a single static droplet to evaluate the intensity of spurious currents and assess the accuracy of the scheme. We then introduce the density or viscosity ratio and apply an external body force to model the Rayleigh–Taylor instability and the behavior of a single rising bubble, respectively. Finally, we employ our method to study the phenomenon of a single bubble breaking up in a Taylor–Green vortex. The comparison between the difference-free scheme and the finite difference method demonstrates the scheme’s capability to yield accurate results. Furthermore, based on the performance evaluation, the current scheme exhibits an impressive 47% increase in efficiency compared to the previous method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信