构造k-置换泛环的有效方法

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Zuling Chang , Lingyu Diao , Shujie Wang
{"title":"构造k-置换泛环的有效方法","authors":"Zuling Chang ,&nbsp;Lingyu Diao ,&nbsp;Shujie Wang","doi":"10.1016/j.dam.2025.05.020","DOIUrl":null,"url":null,"abstract":"<div><div>We present two efficient methods of constructing universal cycles for the set of all <span><math><mi>k</mi></math></span>-permutations of the <span><math><mi>n</mi></math></span>-set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>&gt;</mo><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. These two methods generate universal cycles for <span><math><mi>k</mi></math></span>-permutations from pure cycling registers with feedback function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, using the cycle joining method. Here we design two classes of successor rules that build upon a framework proposed by Gabric et al. (2020), each of which produces <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span> shift inequivalent universal cycles for <span><math><mi>k</mi></math></span>-permutations. Each universal cycle for <span><math><mi>k</mi></math></span>-permutations can be generated in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time per symbol using <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> space.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 120-134"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient methods of constructing universal cycles for k-permutations\",\"authors\":\"Zuling Chang ,&nbsp;Lingyu Diao ,&nbsp;Shujie Wang\",\"doi\":\"10.1016/j.dam.2025.05.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present two efficient methods of constructing universal cycles for the set of all <span><math><mi>k</mi></math></span>-permutations of the <span><math><mi>n</mi></math></span>-set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>&gt;</mo><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. These two methods generate universal cycles for <span><math><mi>k</mi></math></span>-permutations from pure cycling registers with feedback function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, using the cycle joining method. Here we design two classes of successor rules that build upon a framework proposed by Gabric et al. (2020), each of which produces <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span> shift inequivalent universal cycles for <span><math><mi>k</mi></math></span>-permutations. Each universal cycle for <span><math><mi>k</mi></math></span>-permutations can be generated in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time per symbol using <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> space.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"374 \",\"pages\":\"Pages 120-134\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002690\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002690","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于n-集合{1,2,…,n}的所有k-置换的集合,我们给出了两种构造泛环的有效方法,对于n>;k≥3。这两种方法利用环连接法,在反馈函数为f(x0,x1,…,xk−1)=x0的纯循环寄存器上生成k-置换的泛环。在这里,我们设计了两类后继规则,它们建立在Gabric等人(2020)提出的框架之上,每一类规则都为k-置换产生n - k移位不等价泛循环。每个k-置换的通用循环可以在O(n)个符号的O(n)个时间内使用O(n)个空间生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient methods of constructing universal cycles for k-permutations
We present two efficient methods of constructing universal cycles for the set of all k-permutations of the n-set {1,2,,n} for n>k3. These two methods generate universal cycles for k-permutations from pure cycling registers with feedback function f(x0,x1,,xk1)=x0, using the cycle joining method. Here we design two classes of successor rules that build upon a framework proposed by Gabric et al. (2020), each of which produces nk shift inequivalent universal cycles for k-permutations. Each universal cycle for k-permutations can be generated in O(n) time per symbol using O(n) space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信