{"title":"构造k-置换泛环的有效方法","authors":"Zuling Chang , Lingyu Diao , Shujie Wang","doi":"10.1016/j.dam.2025.05.020","DOIUrl":null,"url":null,"abstract":"<div><div>We present two efficient methods of constructing universal cycles for the set of all <span><math><mi>k</mi></math></span>-permutations of the <span><math><mi>n</mi></math></span>-set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>></mo><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. These two methods generate universal cycles for <span><math><mi>k</mi></math></span>-permutations from pure cycling registers with feedback function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, using the cycle joining method. Here we design two classes of successor rules that build upon a framework proposed by Gabric et al. (2020), each of which produces <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span> shift inequivalent universal cycles for <span><math><mi>k</mi></math></span>-permutations. Each universal cycle for <span><math><mi>k</mi></math></span>-permutations can be generated in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time per symbol using <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> space.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 120-134"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient methods of constructing universal cycles for k-permutations\",\"authors\":\"Zuling Chang , Lingyu Diao , Shujie Wang\",\"doi\":\"10.1016/j.dam.2025.05.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present two efficient methods of constructing universal cycles for the set of all <span><math><mi>k</mi></math></span>-permutations of the <span><math><mi>n</mi></math></span>-set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>></mo><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. These two methods generate universal cycles for <span><math><mi>k</mi></math></span>-permutations from pure cycling registers with feedback function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, using the cycle joining method. Here we design two classes of successor rules that build upon a framework proposed by Gabric et al. (2020), each of which produces <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span> shift inequivalent universal cycles for <span><math><mi>k</mi></math></span>-permutations. Each universal cycle for <span><math><mi>k</mi></math></span>-permutations can be generated in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time per symbol using <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> space.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"374 \",\"pages\":\"Pages 120-134\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002690\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002690","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Efficient methods of constructing universal cycles for k-permutations
We present two efficient methods of constructing universal cycles for the set of all -permutations of the -set for . These two methods generate universal cycles for -permutations from pure cycling registers with feedback function , using the cycle joining method. Here we design two classes of successor rules that build upon a framework proposed by Gabric et al. (2020), each of which produces shift inequivalent universal cycles for -permutations. Each universal cycle for -permutations can be generated in time per symbol using space.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.