MO-WOA-GRA-TOPSIS集成框架用于航空航天波纹冷却系统中超临界正癸烷的热流体动力学优化

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Zhijie Chen , Huaizhi Han , Da He , Jiali Yang , Xuanyang Zou
{"title":"MO-WOA-GRA-TOPSIS集成框架用于航空航天波纹冷却系统中超临界正癸烷的热流体动力学优化","authors":"Zhijie Chen ,&nbsp;Huaizhi Han ,&nbsp;Da He ,&nbsp;Jiali Yang ,&nbsp;Xuanyang Zou","doi":"10.1016/j.ijthermalsci.2025.110002","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel MO-WOA-GRA-TOPSIS integrated framework for multi-objective thermo-hydrodynamic optimization of supercritical n-decane in aerospace corrugated cooling systems. Five critical design parameters (corrugation pitch, height, fillet radius, pressure, and mass flow rate) were systematically analyzed to balance heat transfer efficiency, flow resistance, and thermal stability. Quadratic response surface models were developed for Nusselt number (<em>Nu</em>), friction factor (<em>f</em>), and average temperature fluctuation coefficient (<em>ΔC</em>). Grey relational analysis identified dimensionless corrugation height (<em>R/D</em>) as the dominant factor for <em>Nu</em> (26.73 %) and f (24.62 %), while mass flow rate (q<sub>m</sub>) primarily influenced <em>ΔC</em> (21.88 %). The proposed framework outperformed conventional NSGA-II in convergence speed and Pareto front uniformity. Pareto-optimal solutions achieved 46.2 % <em>Nu</em> enhancement and 19.7 % f reduction while maintaining <em>ΔC</em> within 0.5, demonstrating superior thermal management for next-generation aero-engine cooling systems.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 110002"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MO-WOA-GRA-TOPSIS integrated framework for thermo-hydrodynamic optimization of supercritical n-decane in aerospace corrugated cooling systems\",\"authors\":\"Zhijie Chen ,&nbsp;Huaizhi Han ,&nbsp;Da He ,&nbsp;Jiali Yang ,&nbsp;Xuanyang Zou\",\"doi\":\"10.1016/j.ijthermalsci.2025.110002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a novel MO-WOA-GRA-TOPSIS integrated framework for multi-objective thermo-hydrodynamic optimization of supercritical n-decane in aerospace corrugated cooling systems. Five critical design parameters (corrugation pitch, height, fillet radius, pressure, and mass flow rate) were systematically analyzed to balance heat transfer efficiency, flow resistance, and thermal stability. Quadratic response surface models were developed for Nusselt number (<em>Nu</em>), friction factor (<em>f</em>), and average temperature fluctuation coefficient (<em>ΔC</em>). Grey relational analysis identified dimensionless corrugation height (<em>R/D</em>) as the dominant factor for <em>Nu</em> (26.73 %) and f (24.62 %), while mass flow rate (q<sub>m</sub>) primarily influenced <em>ΔC</em> (21.88 %). The proposed framework outperformed conventional NSGA-II in convergence speed and Pareto front uniformity. Pareto-optimal solutions achieved 46.2 % <em>Nu</em> enhancement and 19.7 % f reduction while maintaining <em>ΔC</em> within 0.5, demonstrating superior thermal management for next-generation aero-engine cooling systems.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"215 \",\"pages\":\"Article 110002\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925003254\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925003254","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的MO-WOA-GRA-TOPSIS集成框架,用于航空航天波纹冷却系统中超临界正癸烷的多目标热流体动力学优化。系统分析了五个关键设计参数(波纹节距、高度、圆角半径、压力和质量流量),以平衡传热效率、流动阻力和热稳定性。建立了努塞尔数(Nu)、摩擦系数(f)和平均温度波动系数(ΔC)的二次响应面模型。灰色关联分析发现,无量纲波纹高度(R/D)是影响Nu(26.73%)和f(24.62%)的主要因素,而质量流量(qm)主要影响ΔC(21.88%)。该框架在收敛速度和Pareto锋均匀性方面优于传统NSGA-II。帕雷托最优解决方案实现了46.2%的Nu增强和19.7%的f降低,同时将ΔC控制在0.5以内,展示了下一代航空发动机冷却系统的卓越热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MO-WOA-GRA-TOPSIS integrated framework for thermo-hydrodynamic optimization of supercritical n-decane in aerospace corrugated cooling systems
This study proposes a novel MO-WOA-GRA-TOPSIS integrated framework for multi-objective thermo-hydrodynamic optimization of supercritical n-decane in aerospace corrugated cooling systems. Five critical design parameters (corrugation pitch, height, fillet radius, pressure, and mass flow rate) were systematically analyzed to balance heat transfer efficiency, flow resistance, and thermal stability. Quadratic response surface models were developed for Nusselt number (Nu), friction factor (f), and average temperature fluctuation coefficient (ΔC). Grey relational analysis identified dimensionless corrugation height (R/D) as the dominant factor for Nu (26.73 %) and f (24.62 %), while mass flow rate (qm) primarily influenced ΔC (21.88 %). The proposed framework outperformed conventional NSGA-II in convergence speed and Pareto front uniformity. Pareto-optimal solutions achieved 46.2 % Nu enhancement and 19.7 % f reduction while maintaining ΔC within 0.5, demonstrating superior thermal management for next-generation aero-engine cooling systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信