Yu Zhang , Yihua Jiang , Zhen Yu , Yinhan Li , Zhiyu Zhang , Fuli Zheng , Hong Hu , Guangxia Yu , Zhenkun Guo , Siying Wu , Wenya Shao , Huangyuan Li
{"title":"百草枯诱导的帕金森病样神经变性自噬损伤中小胶质细胞异质性的表征","authors":"Yu Zhang , Yihua Jiang , Zhen Yu , Yinhan Li , Zhiyu Zhang , Fuli Zheng , Hong Hu , Guangxia Yu , Zhenkun Guo , Siying Wu , Wenya Shao , Huangyuan Li","doi":"10.1016/j.ecoenv.2025.118364","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD) is a prevalent neurodegenerative condition influenced by environmental elements, notably Paraquat (PQ), which is one of the known risk factors. Impaired autophagy is a critical factor in the pathogenesis of PD, yet the cellular heterogeneity related to autophagy in PD has not been thoroughly investigated. Here, we established a PQ-induced PD-like neurodegeneration model and found that PQ impairs autophagy during experimental PD progression. Using single-cell RNA sequencing (scRNA-seq), we elucidated the autophagy-related transcriptomic landscapes in this model, identifying microglia as the central cell type associated with PQ-induced autophagy across all brain cell types. Additionally, microglial subtypes in the PQ-exposed model exhibited significant heterogeneity in gene expression characteristics, biological functions, and roles in autophagic regulation. PQ exposure induced potential genetic transformations between microglial subtypes, which may further disrupt their immune response and energy metabolism regulation functions. Subsequently, we validated the identity transformation of microglia revealed by scRNA-seq in both <em>in vivo</em> and <em>in vitro</em> PQ exposure models. Moreover, we identified a specific microglial subtype primarily responsible for the autophagy-related changes observed in the PQ-exposed model. The expression of the autophagic subtype marker gene Inpp5d may contribute to the regulation of PQ-induced autophagic impairment in BV2 cells. This study generates the first scRNA-seq atlas of autophagy in the context of PQ exposure, highlighting the heterogeneity of microglial subtypes and identifying an autophagy-specific microglial subtype as a central mechanism in the pathology of PQ-induced PD-like neurodegeneration.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"299 ","pages":"Article 118364"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing microglial heterogeneity in autophagy impairment of Paraquat-induced Parkinson’s disease-like neurodegeneration\",\"authors\":\"Yu Zhang , Yihua Jiang , Zhen Yu , Yinhan Li , Zhiyu Zhang , Fuli Zheng , Hong Hu , Guangxia Yu , Zhenkun Guo , Siying Wu , Wenya Shao , Huangyuan Li\",\"doi\":\"10.1016/j.ecoenv.2025.118364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Parkinson's disease (PD) is a prevalent neurodegenerative condition influenced by environmental elements, notably Paraquat (PQ), which is one of the known risk factors. Impaired autophagy is a critical factor in the pathogenesis of PD, yet the cellular heterogeneity related to autophagy in PD has not been thoroughly investigated. Here, we established a PQ-induced PD-like neurodegeneration model and found that PQ impairs autophagy during experimental PD progression. Using single-cell RNA sequencing (scRNA-seq), we elucidated the autophagy-related transcriptomic landscapes in this model, identifying microglia as the central cell type associated with PQ-induced autophagy across all brain cell types. Additionally, microglial subtypes in the PQ-exposed model exhibited significant heterogeneity in gene expression characteristics, biological functions, and roles in autophagic regulation. PQ exposure induced potential genetic transformations between microglial subtypes, which may further disrupt their immune response and energy metabolism regulation functions. Subsequently, we validated the identity transformation of microglia revealed by scRNA-seq in both <em>in vivo</em> and <em>in vitro</em> PQ exposure models. Moreover, we identified a specific microglial subtype primarily responsible for the autophagy-related changes observed in the PQ-exposed model. The expression of the autophagic subtype marker gene Inpp5d may contribute to the regulation of PQ-induced autophagic impairment in BV2 cells. This study generates the first scRNA-seq atlas of autophagy in the context of PQ exposure, highlighting the heterogeneity of microglial subtypes and identifying an autophagy-specific microglial subtype as a central mechanism in the pathology of PQ-induced PD-like neurodegeneration.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"299 \",\"pages\":\"Article 118364\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651325007006\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325007006","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterizing microglial heterogeneity in autophagy impairment of Paraquat-induced Parkinson’s disease-like neurodegeneration
Parkinson's disease (PD) is a prevalent neurodegenerative condition influenced by environmental elements, notably Paraquat (PQ), which is one of the known risk factors. Impaired autophagy is a critical factor in the pathogenesis of PD, yet the cellular heterogeneity related to autophagy in PD has not been thoroughly investigated. Here, we established a PQ-induced PD-like neurodegeneration model and found that PQ impairs autophagy during experimental PD progression. Using single-cell RNA sequencing (scRNA-seq), we elucidated the autophagy-related transcriptomic landscapes in this model, identifying microglia as the central cell type associated with PQ-induced autophagy across all brain cell types. Additionally, microglial subtypes in the PQ-exposed model exhibited significant heterogeneity in gene expression characteristics, biological functions, and roles in autophagic regulation. PQ exposure induced potential genetic transformations between microglial subtypes, which may further disrupt their immune response and energy metabolism regulation functions. Subsequently, we validated the identity transformation of microglia revealed by scRNA-seq in both in vivo and in vitro PQ exposure models. Moreover, we identified a specific microglial subtype primarily responsible for the autophagy-related changes observed in the PQ-exposed model. The expression of the autophagic subtype marker gene Inpp5d may contribute to the regulation of PQ-induced autophagic impairment in BV2 cells. This study generates the first scRNA-seq atlas of autophagy in the context of PQ exposure, highlighting the heterogeneity of microglial subtypes and identifying an autophagy-specific microglial subtype as a central mechanism in the pathology of PQ-induced PD-like neurodegeneration.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.