Larissa N. Wüst , Christian Cajochen , Ruta Lasauskaite
{"title":"使用贝叶斯方法,睡眠类型与心血管对早晨认知挑战的反应之间没有关联","authors":"Larissa N. Wüst , Christian Cajochen , Ruta Lasauskaite","doi":"10.1016/j.nbscr.2025.100125","DOIUrl":null,"url":null,"abstract":"<div><div>A chronotype is defined as a preference for certain behaviours (e.g., sleep and wake) to occur at specific times of day. It is therefore also temporally linked with cognitive performance across the day. In an exploratory analysis, we sought to find associations between chronotypes determined from self-reported habitual sleep timing and from salivary melatonin onset with mental effort during a 2-back working memory task. Mental effort was operationalized as sympathetic beta-adrenergic impact on the heart, which is best reflected by the cardiac pre-ejection period (PEP) and also influences systolic blood pressure (SBP). Each participant underwent two experimental sessions in the morning: once after sleeping for 8 h and once after sleeping for 5 h the night before. To determine the timing of evening melatonin onset, participants took saliva samples at hourly intervals at home in the evening, prior to their experimental sessions. Chronotypes were determined using reported sleep times from the Munich Chronotype Questionnaire and average melatonin onset during both sleep conditions. Based on this, participants were grouped into early, intermediate, or late types. Neither alertness (<em>BF</em><sub><em>10</em></sub> = 0.019), perceived task demand (<em>BF</em><sub><em>10</em></sub> = 0.008), nor SBP response (<em>BF</em><sub><em>10</em></sub> = 0.268) were credibly impacted by sleep-time derived chronotype, while the association with PEP response (<em>BF</em><sub><em>10</em></sub> = 0.631) during a cognitive challenge in the morning was inconclusive. Similarly, the timing of evening melatonin onset did not affect alertness (<em>BF</em><sub><em>10</em></sub> = 0.003), perceived task demand (<em>BF</em><sub><em>10</em></sub> = 0.006), or PEP or SBP response (PEP: <em>BF</em><sub><em>10</em></sub> = 0.232, SBP: <em>BF</em><sub><em>10</em></sub> = 0.263) during the cognitive challenge. Our data shows no impact of chronotypes on effort-related cardiovascular response during a cognitive challenge in the morning, which was scheduled according to habitual sleep times.</div></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"18 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No association between chronotype and cardiovascular response to a cognitive challenge in the morning using a Bayesian approach\",\"authors\":\"Larissa N. Wüst , Christian Cajochen , Ruta Lasauskaite\",\"doi\":\"10.1016/j.nbscr.2025.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A chronotype is defined as a preference for certain behaviours (e.g., sleep and wake) to occur at specific times of day. It is therefore also temporally linked with cognitive performance across the day. In an exploratory analysis, we sought to find associations between chronotypes determined from self-reported habitual sleep timing and from salivary melatonin onset with mental effort during a 2-back working memory task. Mental effort was operationalized as sympathetic beta-adrenergic impact on the heart, which is best reflected by the cardiac pre-ejection period (PEP) and also influences systolic blood pressure (SBP). Each participant underwent two experimental sessions in the morning: once after sleeping for 8 h and once after sleeping for 5 h the night before. To determine the timing of evening melatonin onset, participants took saliva samples at hourly intervals at home in the evening, prior to their experimental sessions. Chronotypes were determined using reported sleep times from the Munich Chronotype Questionnaire and average melatonin onset during both sleep conditions. Based on this, participants were grouped into early, intermediate, or late types. Neither alertness (<em>BF</em><sub><em>10</em></sub> = 0.019), perceived task demand (<em>BF</em><sub><em>10</em></sub> = 0.008), nor SBP response (<em>BF</em><sub><em>10</em></sub> = 0.268) were credibly impacted by sleep-time derived chronotype, while the association with PEP response (<em>BF</em><sub><em>10</em></sub> = 0.631) during a cognitive challenge in the morning was inconclusive. Similarly, the timing of evening melatonin onset did not affect alertness (<em>BF</em><sub><em>10</em></sub> = 0.003), perceived task demand (<em>BF</em><sub><em>10</em></sub> = 0.006), or PEP or SBP response (PEP: <em>BF</em><sub><em>10</em></sub> = 0.232, SBP: <em>BF</em><sub><em>10</em></sub> = 0.263) during the cognitive challenge. Our data shows no impact of chronotypes on effort-related cardiovascular response during a cognitive challenge in the morning, which was scheduled according to habitual sleep times.</div></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"18 \",\"pages\":\"Article 100125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994425000148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994425000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
No association between chronotype and cardiovascular response to a cognitive challenge in the morning using a Bayesian approach
A chronotype is defined as a preference for certain behaviours (e.g., sleep and wake) to occur at specific times of day. It is therefore also temporally linked with cognitive performance across the day. In an exploratory analysis, we sought to find associations between chronotypes determined from self-reported habitual sleep timing and from salivary melatonin onset with mental effort during a 2-back working memory task. Mental effort was operationalized as sympathetic beta-adrenergic impact on the heart, which is best reflected by the cardiac pre-ejection period (PEP) and also influences systolic blood pressure (SBP). Each participant underwent two experimental sessions in the morning: once after sleeping for 8 h and once after sleeping for 5 h the night before. To determine the timing of evening melatonin onset, participants took saliva samples at hourly intervals at home in the evening, prior to their experimental sessions. Chronotypes were determined using reported sleep times from the Munich Chronotype Questionnaire and average melatonin onset during both sleep conditions. Based on this, participants were grouped into early, intermediate, or late types. Neither alertness (BF10 = 0.019), perceived task demand (BF10 = 0.008), nor SBP response (BF10 = 0.268) were credibly impacted by sleep-time derived chronotype, while the association with PEP response (BF10 = 0.631) during a cognitive challenge in the morning was inconclusive. Similarly, the timing of evening melatonin onset did not affect alertness (BF10 = 0.003), perceived task demand (BF10 = 0.006), or PEP or SBP response (PEP: BF10 = 0.232, SBP: BF10 = 0.263) during the cognitive challenge. Our data shows no impact of chronotypes on effort-related cardiovascular response during a cognitive challenge in the morning, which was scheduled according to habitual sleep times.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.