废气热回收采用螺旋翅片双管换热器,考虑气体辐射效应;数值调查,性能分析和优化

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Abolfazl Hosseinkhani , Sina Khaleghi , Seyyed Abdolreza Gandjalikhan Nassab , Mohammad Hadi Mohammadi
{"title":"废气热回收采用螺旋翅片双管换热器,考虑气体辐射效应;数值调查,性能分析和优化","authors":"Abolfazl Hosseinkhani ,&nbsp;Sina Khaleghi ,&nbsp;Seyyed Abdolreza Gandjalikhan Nassab ,&nbsp;Mohammad Hadi Mohammadi","doi":"10.1016/j.enconman.2025.119961","DOIUrl":null,"url":null,"abstract":"<div><div>Recovering waste heat from industrial exhaust gases, including those from flare systems, offers a crucial opportunity to enhance energy efficiency and minimize environmental impact. This study investigates the thermal and hydrodynamic performance of a novel gas-to-gas double-pipe heat exchanger with helically baffled fins, specifically designed for heat recovery from flare exhaust gases in various industrial applications. A numerical approach using the finite element method analyzes the effects of helical pitch length, cold gas inlet velocity, and gas radiation absorption coefficients on heat transfer and pressure drop. The study considers pitch lengths from 25 to 100 mm, cold air velocities between 0.5 and 1.5 m/s, and absorption coefficients from 0 to 2 m<sup>−1</sup>. The results demonstrate that reducing the pitch length enhances turbulence, leading to improved heat transfer but a significant increase in pressure drop. Gas radiation markedly boosts heat flux, particularly at higher absorption coefficients, with minimal influence on pressure drop. A multi-objective optimization approach, targeting maximum heat flux and minimal pressure drop, identifies the optimal configuration. The optimal design features a pitch length of 87.18 mm, an absorption coefficient of 1.88 m<sup>−1</sup>, and a cold air inlet velocity of 0.63 m/s, achieving a heat flux of 828.45 W/m<sup>2</sup> and a pressure drop of 2.21 Pa.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"339 ","pages":"Article 119961"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exhaust gas heat recovery using a double-pipe heat exchanger with helical fins, considering gas radiation effect; numerical investigation, performance analysis, and optimization\",\"authors\":\"Abolfazl Hosseinkhani ,&nbsp;Sina Khaleghi ,&nbsp;Seyyed Abdolreza Gandjalikhan Nassab ,&nbsp;Mohammad Hadi Mohammadi\",\"doi\":\"10.1016/j.enconman.2025.119961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recovering waste heat from industrial exhaust gases, including those from flare systems, offers a crucial opportunity to enhance energy efficiency and minimize environmental impact. This study investigates the thermal and hydrodynamic performance of a novel gas-to-gas double-pipe heat exchanger with helically baffled fins, specifically designed for heat recovery from flare exhaust gases in various industrial applications. A numerical approach using the finite element method analyzes the effects of helical pitch length, cold gas inlet velocity, and gas radiation absorption coefficients on heat transfer and pressure drop. The study considers pitch lengths from 25 to 100 mm, cold air velocities between 0.5 and 1.5 m/s, and absorption coefficients from 0 to 2 m<sup>−1</sup>. The results demonstrate that reducing the pitch length enhances turbulence, leading to improved heat transfer but a significant increase in pressure drop. Gas radiation markedly boosts heat flux, particularly at higher absorption coefficients, with minimal influence on pressure drop. A multi-objective optimization approach, targeting maximum heat flux and minimal pressure drop, identifies the optimal configuration. The optimal design features a pitch length of 87.18 mm, an absorption coefficient of 1.88 m<sup>−1</sup>, and a cold air inlet velocity of 0.63 m/s, achieving a heat flux of 828.45 W/m<sup>2</sup> and a pressure drop of 2.21 Pa.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"339 \",\"pages\":\"Article 119961\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890425004856\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425004856","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

从工业废气中回收废热,包括从火炬系统中回收废热,为提高能源效率和减少对环境的影响提供了一个至关重要的机会。本研究研究了一种新型的带有螺旋折板翅片的燃气-燃气双管换热器的热学和流体力学性能,该换热器专为各种工业应用中火炬废气的热回收而设计。采用有限元数值方法分析了螺旋螺距长度、冷气流入口速度和气体辐射吸收系数对换热和压降的影响。该研究考虑的间距长度为25至100毫米,冷空气速度为0.5至1.5米/秒,吸收系数为0至2米−1。结果表明,减小桨距长度会增强湍流,从而改善换热,但会显著增加压降。气体辐射显著提高热通量,特别是在吸收系数较高时,对压降的影响最小。采用多目标优化方法,以最大热流密度和最小压降为目标,确定最优配置。优化设计的节距长度为87.18 mm,吸收系数为1.88 m−1,进冷风速度为0.63 m/s,热流密度为828.45 W/m2,压降为2.21 Pa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exhaust gas heat recovery using a double-pipe heat exchanger with helical fins, considering gas radiation effect; numerical investigation, performance analysis, and optimization
Recovering waste heat from industrial exhaust gases, including those from flare systems, offers a crucial opportunity to enhance energy efficiency and minimize environmental impact. This study investigates the thermal and hydrodynamic performance of a novel gas-to-gas double-pipe heat exchanger with helically baffled fins, specifically designed for heat recovery from flare exhaust gases in various industrial applications. A numerical approach using the finite element method analyzes the effects of helical pitch length, cold gas inlet velocity, and gas radiation absorption coefficients on heat transfer and pressure drop. The study considers pitch lengths from 25 to 100 mm, cold air velocities between 0.5 and 1.5 m/s, and absorption coefficients from 0 to 2 m−1. The results demonstrate that reducing the pitch length enhances turbulence, leading to improved heat transfer but a significant increase in pressure drop. Gas radiation markedly boosts heat flux, particularly at higher absorption coefficients, with minimal influence on pressure drop. A multi-objective optimization approach, targeting maximum heat flux and minimal pressure drop, identifies the optimal configuration. The optimal design features a pitch length of 87.18 mm, an absorption coefficient of 1.88 m−1, and a cold air inlet velocity of 0.63 m/s, achieving a heat flux of 828.45 W/m2 and a pressure drop of 2.21 Pa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信