方形腔内热振动与电对流耦合动力学

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
V. Navaneethakrishnan , M. Muthtamilselvan , D. Prakash
{"title":"方形腔内热振动与电对流耦合动力学","authors":"V. Navaneethakrishnan ,&nbsp;M. Muthtamilselvan ,&nbsp;D. Prakash","doi":"10.1016/j.elstat.2025.104086","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the combined effects of coulomb force and high-frequency, low-amplitude horizontal vibrations on thermal convection within a square enclosure filled with dielectric fluid. The governing equations are formulated using an averaged approach, incorporating vorticity of the mean velocity and stream functions for both mean and fluctuating flows. These equations are solved using the finite difference method with alternate direction implicit (ADI) scheme and an iterative successive under-relaxation (SUR) technique. The analysis focuses mainly on the impact of the electrical Rayleigh number (<span><math><mrow><mn>100</mn><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>≤</mo><mn>700</mn></mrow></math></span>) and the vibrational Rayleigh number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>) for liquid gas oil. The results show that at low <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>100</mn></mrow></math></span>, charge transport is controlled by drift and diffusion, forming thicker thermal layers. As <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, charge mobility and thermal gradients are suppressed, while <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>700</mn></mrow></math></span> enhances charge transport and heat redistribution. At low vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>), increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> leads to a 112% increase in the mean Nusselt number. At moderate vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>), the enhancement drops to 55%, and at high vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>), heat transfer decreases by 26%, indicating the suppression of electroconvection by vibrational forces. Flow transitions from vertical to horizontal eddies with increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math></span>, and thermal buoyancy at <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> alters charge transport, with <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> inducing a dual-vortex regime that improves charge homogeneity. These findings reveal the importance of interplay between vibrational effects and electroconvection, highlighting the potential of advanced cooling techniques for thermal management in space systems.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"135 ","pages":"Article 104086"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled thermovibrational and electroconvection dynamics in a square cavity\",\"authors\":\"V. Navaneethakrishnan ,&nbsp;M. Muthtamilselvan ,&nbsp;D. Prakash\",\"doi\":\"10.1016/j.elstat.2025.104086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the combined effects of coulomb force and high-frequency, low-amplitude horizontal vibrations on thermal convection within a square enclosure filled with dielectric fluid. The governing equations are formulated using an averaged approach, incorporating vorticity of the mean velocity and stream functions for both mean and fluctuating flows. These equations are solved using the finite difference method with alternate direction implicit (ADI) scheme and an iterative successive under-relaxation (SUR) technique. The analysis focuses mainly on the impact of the electrical Rayleigh number (<span><math><mrow><mn>100</mn><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>≤</mo><mn>700</mn></mrow></math></span>) and the vibrational Rayleigh number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>) for liquid gas oil. The results show that at low <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>100</mn></mrow></math></span>, charge transport is controlled by drift and diffusion, forming thicker thermal layers. As <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, charge mobility and thermal gradients are suppressed, while <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>700</mn></mrow></math></span> enhances charge transport and heat redistribution. At low vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>), increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> leads to a 112% increase in the mean Nusselt number. At moderate vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>), the enhancement drops to 55%, and at high vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>), heat transfer decreases by 26%, indicating the suppression of electroconvection by vibrational forces. Flow transitions from vertical to horizontal eddies with increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math></span>, and thermal buoyancy at <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> alters charge transport, with <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> inducing a dual-vortex regime that improves charge homogeneity. These findings reveal the importance of interplay between vibrational effects and electroconvection, highlighting the potential of advanced cooling techniques for thermal management in space systems.</div></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":\"135 \",\"pages\":\"Article 104086\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304388625000580\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388625000580","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了库仑力和高频、低振幅水平振动对充满介电流体的方形外壳内热对流的综合影响。控制方程采用平均方法,结合平均速度的涡度和平均和波动流的流函数。采用交替方向隐式(ADI)格式的有限差分法和迭代逐次欠松弛(SUR)技术求解这些方程。重点分析了电瑞利数(100≤Rae≤700)和振动瑞利数(103≤Rav≤106)对液态气油的影响。结果表明,在低Rae=100时,电荷输移受漂移和扩散控制,形成较厚的热层。Rae≥105时,电荷迁移率和热梯度受到抑制,Rae=700时,电荷输运和热重分布增强。在低振动时(Rav=103),增加Rae,平均努塞尔数增加112%。在中等振动时(Rav=105),传热增强率降至55%,在高振动时(Rav=106),传热增强率下降26%,说明振动力对电对流有抑制作用。随着Rav的增加,流动从垂直涡旋转变为水平涡旋,Rat>;0处的热浮力改变了电荷输运,Rat=106诱导了双涡旋,改善了电荷的均匀性。这些发现揭示了振动效应和电对流之间相互作用的重要性,突出了先进冷却技术在空间系统热管理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled thermovibrational and electroconvection dynamics in a square cavity
This study explores the combined effects of coulomb force and high-frequency, low-amplitude horizontal vibrations on thermal convection within a square enclosure filled with dielectric fluid. The governing equations are formulated using an averaged approach, incorporating vorticity of the mean velocity and stream functions for both mean and fluctuating flows. These equations are solved using the finite difference method with alternate direction implicit (ADI) scheme and an iterative successive under-relaxation (SUR) technique. The analysis focuses mainly on the impact of the electrical Rayleigh number (100Rae700) and the vibrational Rayleigh number (103Rav106) for liquid gas oil. The results show that at low Rae=100, charge transport is controlled by drift and diffusion, forming thicker thermal layers. As Rav105, charge mobility and thermal gradients are suppressed, while Rae=700 enhances charge transport and heat redistribution. At low vibration (Rav=103), increasing Rae leads to a 112% increase in the mean Nusselt number. At moderate vibration (Rav=105), the enhancement drops to 55%, and at high vibration (Rav=106), heat transfer decreases by 26%, indicating the suppression of electroconvection by vibrational forces. Flow transitions from vertical to horizontal eddies with increasing Rav, and thermal buoyancy at Rat>0 alters charge transport, with Rat=106 inducing a dual-vortex regime that improves charge homogeneity. These findings reveal the importance of interplay between vibrational effects and electroconvection, highlighting the potential of advanced cooling techniques for thermal management in space systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信