V. Navaneethakrishnan , M. Muthtamilselvan , D. Prakash
{"title":"方形腔内热振动与电对流耦合动力学","authors":"V. Navaneethakrishnan , M. Muthtamilselvan , D. Prakash","doi":"10.1016/j.elstat.2025.104086","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the combined effects of coulomb force and high-frequency, low-amplitude horizontal vibrations on thermal convection within a square enclosure filled with dielectric fluid. The governing equations are formulated using an averaged approach, incorporating vorticity of the mean velocity and stream functions for both mean and fluctuating flows. These equations are solved using the finite difference method with alternate direction implicit (ADI) scheme and an iterative successive under-relaxation (SUR) technique. The analysis focuses mainly on the impact of the electrical Rayleigh number (<span><math><mrow><mn>100</mn><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>≤</mo><mn>700</mn></mrow></math></span>) and the vibrational Rayleigh number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>) for liquid gas oil. The results show that at low <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>100</mn></mrow></math></span>, charge transport is controlled by drift and diffusion, forming thicker thermal layers. As <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, charge mobility and thermal gradients are suppressed, while <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>700</mn></mrow></math></span> enhances charge transport and heat redistribution. At low vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>), increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> leads to a 112% increase in the mean Nusselt number. At moderate vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>), the enhancement drops to 55%, and at high vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>), heat transfer decreases by 26%, indicating the suppression of electroconvection by vibrational forces. Flow transitions from vertical to horizontal eddies with increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math></span>, and thermal buoyancy at <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> alters charge transport, with <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> inducing a dual-vortex regime that improves charge homogeneity. These findings reveal the importance of interplay between vibrational effects and electroconvection, highlighting the potential of advanced cooling techniques for thermal management in space systems.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"135 ","pages":"Article 104086"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled thermovibrational and electroconvection dynamics in a square cavity\",\"authors\":\"V. Navaneethakrishnan , M. Muthtamilselvan , D. Prakash\",\"doi\":\"10.1016/j.elstat.2025.104086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the combined effects of coulomb force and high-frequency, low-amplitude horizontal vibrations on thermal convection within a square enclosure filled with dielectric fluid. The governing equations are formulated using an averaged approach, incorporating vorticity of the mean velocity and stream functions for both mean and fluctuating flows. These equations are solved using the finite difference method with alternate direction implicit (ADI) scheme and an iterative successive under-relaxation (SUR) technique. The analysis focuses mainly on the impact of the electrical Rayleigh number (<span><math><mrow><mn>100</mn><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>≤</mo><mn>700</mn></mrow></math></span>) and the vibrational Rayleigh number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>≤</mo><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>) for liquid gas oil. The results show that at low <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>100</mn></mrow></math></span>, charge transport is controlled by drift and diffusion, forming thicker thermal layers. As <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, charge mobility and thermal gradients are suppressed, while <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>700</mn></mrow></math></span> enhances charge transport and heat redistribution. At low vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>), increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> leads to a 112% increase in the mean Nusselt number. At moderate vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>), the enhancement drops to 55%, and at high vibration (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>), heat transfer decreases by 26%, indicating the suppression of electroconvection by vibrational forces. Flow transitions from vertical to horizontal eddies with increasing <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math></span>, and thermal buoyancy at <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> alters charge transport, with <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> inducing a dual-vortex regime that improves charge homogeneity. These findings reveal the importance of interplay between vibrational effects and electroconvection, highlighting the potential of advanced cooling techniques for thermal management in space systems.</div></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":\"135 \",\"pages\":\"Article 104086\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304388625000580\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388625000580","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Coupled thermovibrational and electroconvection dynamics in a square cavity
This study explores the combined effects of coulomb force and high-frequency, low-amplitude horizontal vibrations on thermal convection within a square enclosure filled with dielectric fluid. The governing equations are formulated using an averaged approach, incorporating vorticity of the mean velocity and stream functions for both mean and fluctuating flows. These equations are solved using the finite difference method with alternate direction implicit (ADI) scheme and an iterative successive under-relaxation (SUR) technique. The analysis focuses mainly on the impact of the electrical Rayleigh number () and the vibrational Rayleigh number () for liquid gas oil. The results show that at low , charge transport is controlled by drift and diffusion, forming thicker thermal layers. As , charge mobility and thermal gradients are suppressed, while enhances charge transport and heat redistribution. At low vibration (), increasing leads to a 112% increase in the mean Nusselt number. At moderate vibration (), the enhancement drops to 55%, and at high vibration (), heat transfer decreases by 26%, indicating the suppression of electroconvection by vibrational forces. Flow transitions from vertical to horizontal eddies with increasing , and thermal buoyancy at alters charge transport, with inducing a dual-vortex regime that improves charge homogeneity. These findings reveal the importance of interplay between vibrational effects and electroconvection, highlighting the potential of advanced cooling techniques for thermal management in space systems.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.