{"title":"下半连续包络的积分表示及非连续拉格朗日量的Lavrentiev现象","authors":"Tommaso Bertin","doi":"10.1016/j.nonrwa.2025.104414","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mspace></mspace><mi>u</mi><mo>∈</mo><mi>φ</mi><mo>+</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is an open bounded Lipschitz subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> and <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume neither convexity or continuity of the Lagrangian w.r.t. the last variable. We prove that, under suitable assumptions, the lower semicontinuous envelope of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> both in <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and in the larger space <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> can be represented by means of the bipolar <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> of <span><math><mi>f</mi></math></span>. In particular we can also exclude Lavrentiev Phenomenon between <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> for autonomous Lagrangians.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104414"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral representations of lower semicontinuous envelopes and Lavrentiev phenomenon for non continuous Lagrangians\",\"authors\":\"Tommaso Bertin\",\"doi\":\"10.1016/j.nonrwa.2025.104414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mspace></mspace><mi>u</mi><mo>∈</mo><mi>φ</mi><mo>+</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is an open bounded Lipschitz subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> and <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume neither convexity or continuity of the Lagrangian w.r.t. the last variable. We prove that, under suitable assumptions, the lower semicontinuous envelope of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> both in <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and in the larger space <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> can be represented by means of the bipolar <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> of <span><math><mi>f</mi></math></span>. In particular we can also exclude Lavrentiev Phenomenon between <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> for autonomous Lagrangians.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"86 \",\"pages\":\"Article 104414\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Integral representations of lower semicontinuous envelopes and Lavrentiev phenomenon for non continuous Lagrangians
We consider the functional where is an open bounded Lipschitz subset of and . We do not assume neither convexity or continuity of the Lagrangian w.r.t. the last variable. We prove that, under suitable assumptions, the lower semicontinuous envelope of both in and in the larger space can be represented by means of the bipolar of . In particular we can also exclude Lavrentiev Phenomenon between and for autonomous Lagrangians.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.