下半连续包络的积分表示及非连续拉格朗日量的Lavrentiev现象

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Tommaso Bertin
{"title":"下半连续包络的积分表示及非连续拉格朗日量的Lavrentiev现象","authors":"Tommaso Bertin","doi":"10.1016/j.nonrwa.2025.104414","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mspace></mspace><mi>u</mi><mo>∈</mo><mi>φ</mi><mo>+</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is an open bounded Lipschitz subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> and <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume neither convexity or continuity of the Lagrangian w.r.t. the last variable. We prove that, under suitable assumptions, the lower semicontinuous envelope of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> both in <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and in the larger space <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> can be represented by means of the bipolar <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> of <span><math><mi>f</mi></math></span>. In particular we can also exclude Lavrentiev Phenomenon between <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> for autonomous Lagrangians.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104414"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral representations of lower semicontinuous envelopes and Lavrentiev phenomenon for non continuous Lagrangians\",\"authors\":\"Tommaso Bertin\",\"doi\":\"10.1016/j.nonrwa.2025.104414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mspace></mspace><mi>u</mi><mo>∈</mo><mi>φ</mi><mo>+</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is an open bounded Lipschitz subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> and <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume neither convexity or continuity of the Lagrangian w.r.t. the last variable. We prove that, under suitable assumptions, the lower semicontinuous envelope of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> both in <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and in the larger space <span><math><mrow><mi>φ</mi><mo>+</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> can be represented by means of the bipolar <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> of <span><math><mi>f</mi></math></span>. In particular we can also exclude Lavrentiev Phenomenon between <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> for autonomous Lagrangians.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"86 \",\"pages\":\"Article 104414\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑泛函F∞(u)=∫Ωf(x,u(x),∇u(x))dxu∈φ+W01,∞(Ω,R),其中Ω是RN和φ∈W1,∞(Ω)的开有界Lipschitz子集。我们不假设最后一个变量的拉格朗日函数是凸性或连续性的。我们证明了在适当的假设下,F∞在φ+W1,∞(Ω)和较大空间φ+W1,p(Ω)上的下半连续包络可以用F的双极F∗∗表示。特别是对于自治拉格朗日量,我们还可以排除W1,∞(Ω)和W1,1(Ω)之间的Lavrentiev现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral representations of lower semicontinuous envelopes and Lavrentiev phenomenon for non continuous Lagrangians
We consider the functional F(u)=Ωf(x,u(x),u(x))dxuφ+W01,(Ω,R)where Ω is an open bounded Lipschitz subset of RN and φW1,(Ω). We do not assume neither convexity or continuity of the Lagrangian w.r.t. the last variable. We prove that, under suitable assumptions, the lower semicontinuous envelope of F both in φ+W1,(Ω) and in the larger space φ+W1,p(Ω) can be represented by means of the bipolar f of f. In particular we can also exclude Lavrentiev Phenomenon between W1,(Ω) and W1,1(Ω) for autonomous Lagrangians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信