Jiayu Wang, Han Wang, Qingqing Sui, Bingxue Dong, Zhenqi Liao, Chenglin Yang, Xinwei Deng, Zhijun Li, Junliang Fan
{"title":"覆盖栽培模式对黄土高原旱作夏玉米产量、资源利用效率和温室气体排放的影响","authors":"Jiayu Wang, Han Wang, Qingqing Sui, Bingxue Dong, Zhenqi Liao, Chenglin Yang, Xinwei Deng, Zhijun Li, Junliang Fan","doi":"10.1016/j.agwat.2025.109574","DOIUrl":null,"url":null,"abstract":"<div><div>Soil mulching, an efficient practice for enhancing crop productivity, has been widely used in agricultural production in the arid and semi-arid regions worldwide. A two-season (2023 and 2024) field experiment was conducted on rainfed summer maize on the Loess Plateau of China, including six mulching cultivation patterns: flat cultivation with no mulching (NM), flat cultivation with full straw mulching (SM), ridge-furrow cultivation with transparent film mulching over the ridge (RP), ridge-furrow cultivation with transparent film mulching over continuous ridges (DMt), ridge-furrow cultivation with silver-black film mulching over continuous ridges (DMs), and ridge-furrow cultivation with black film mulching over continuous ridges (DMb). The results showed that soil mulching significantly affected the soil hydrothermal conditions within the 0–25 cm soil layer and significantly decreased crop evapotranspiration. DMb obtained the highest grain yield, followed by DMs. Compared to NM, DMb significantly increased leaf area index, above-ground biomass, 1000-grain weight, grain yield, water productivity, thermal time use efficiency, and radiation use efficiency by 31.3 %, 41.8 %, 26.2 %, 51.1 %, 49.6 %, 42.1 %, and 18.3 %, respectively. DMt had the highest greenhouse gas emission index (GHGI), while the GHGI of DMb was 52.4 % lower than that of DMt. Overall, DMb optimized soil hydrothermal conditions and facilitated above-ground biomass and water-heat-radiation use efficiency, significantly improving grain yield of rainfed summer maize while maintaining relatively low GHGI, which was a sustainable agricultural strategy for rainfed maize production on the Loess Plateau.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"315 ","pages":"Article 109574"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of mulching cultivation patterns on grain yield, resources use efficiency and greenhouse gas emissions of rainfed summer maize on the Loess Plateau of China\",\"authors\":\"Jiayu Wang, Han Wang, Qingqing Sui, Bingxue Dong, Zhenqi Liao, Chenglin Yang, Xinwei Deng, Zhijun Li, Junliang Fan\",\"doi\":\"10.1016/j.agwat.2025.109574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil mulching, an efficient practice for enhancing crop productivity, has been widely used in agricultural production in the arid and semi-arid regions worldwide. A two-season (2023 and 2024) field experiment was conducted on rainfed summer maize on the Loess Plateau of China, including six mulching cultivation patterns: flat cultivation with no mulching (NM), flat cultivation with full straw mulching (SM), ridge-furrow cultivation with transparent film mulching over the ridge (RP), ridge-furrow cultivation with transparent film mulching over continuous ridges (DMt), ridge-furrow cultivation with silver-black film mulching over continuous ridges (DMs), and ridge-furrow cultivation with black film mulching over continuous ridges (DMb). The results showed that soil mulching significantly affected the soil hydrothermal conditions within the 0–25 cm soil layer and significantly decreased crop evapotranspiration. DMb obtained the highest grain yield, followed by DMs. Compared to NM, DMb significantly increased leaf area index, above-ground biomass, 1000-grain weight, grain yield, water productivity, thermal time use efficiency, and radiation use efficiency by 31.3 %, 41.8 %, 26.2 %, 51.1 %, 49.6 %, 42.1 %, and 18.3 %, respectively. DMt had the highest greenhouse gas emission index (GHGI), while the GHGI of DMb was 52.4 % lower than that of DMt. Overall, DMb optimized soil hydrothermal conditions and facilitated above-ground biomass and water-heat-radiation use efficiency, significantly improving grain yield of rainfed summer maize while maintaining relatively low GHGI, which was a sustainable agricultural strategy for rainfed maize production on the Loess Plateau.</div></div>\",\"PeriodicalId\":7634,\"journal\":{\"name\":\"Agricultural Water Management\",\"volume\":\"315 \",\"pages\":\"Article 109574\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Water Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378377425002884\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425002884","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Effects of mulching cultivation patterns on grain yield, resources use efficiency and greenhouse gas emissions of rainfed summer maize on the Loess Plateau of China
Soil mulching, an efficient practice for enhancing crop productivity, has been widely used in agricultural production in the arid and semi-arid regions worldwide. A two-season (2023 and 2024) field experiment was conducted on rainfed summer maize on the Loess Plateau of China, including six mulching cultivation patterns: flat cultivation with no mulching (NM), flat cultivation with full straw mulching (SM), ridge-furrow cultivation with transparent film mulching over the ridge (RP), ridge-furrow cultivation with transparent film mulching over continuous ridges (DMt), ridge-furrow cultivation with silver-black film mulching over continuous ridges (DMs), and ridge-furrow cultivation with black film mulching over continuous ridges (DMb). The results showed that soil mulching significantly affected the soil hydrothermal conditions within the 0–25 cm soil layer and significantly decreased crop evapotranspiration. DMb obtained the highest grain yield, followed by DMs. Compared to NM, DMb significantly increased leaf area index, above-ground biomass, 1000-grain weight, grain yield, water productivity, thermal time use efficiency, and radiation use efficiency by 31.3 %, 41.8 %, 26.2 %, 51.1 %, 49.6 %, 42.1 %, and 18.3 %, respectively. DMt had the highest greenhouse gas emission index (GHGI), while the GHGI of DMb was 52.4 % lower than that of DMt. Overall, DMb optimized soil hydrothermal conditions and facilitated above-ground biomass and water-heat-radiation use efficiency, significantly improving grain yield of rainfed summer maize while maintaining relatively low GHGI, which was a sustainable agricultural strategy for rainfed maize production on the Loess Plateau.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.