直径不超过4的单环图最小正特征值的界

IF 0.7 3区 数学 Q2 MATHEMATICS
Sasmita Barik, Piyush Verma
{"title":"直径不超过4的单环图最小正特征值的界","authors":"Sasmita Barik,&nbsp;Piyush Verma","doi":"10.1016/j.disc.2025.114574","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph on <em>n</em> vertices and <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the smallest positive eigenvalue of its adjacency matrix <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In [S. Rani and S. Barik, Upper bounds on the smallest positive eigenvalues of trees, Ann. Comb. 27(1) (2023) 19–29], the authors characterized the trees with small diameters having the maximum and minimum <em>τ</em>, respectively. In this article, we extend their work to the unicyclic graphs. We provide bounds for the smallest positive eigenvalue and obtain the graphs with the maximum and minimum <em>τ</em> among all the unicyclic graphs on <em>n</em> vertices having diameters 2 and 3, respectively. Furthermore, we characterize the graphs with the maximum <em>τ</em> among all the unicyclic graphs on <em>n</em> vertices having diameter 4. Finally, we characterize all the unicyclic graphs on <em>n</em> vertices with diameter at most 4 whose smallest positive eigenvalue is equal to <span><math><mfrac><mrow><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, the reciprocal of the golden ratio.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114574"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for the smallest positive eigenvalue of unicyclic graphs with diameter at most 4\",\"authors\":\"Sasmita Barik,&nbsp;Piyush Verma\",\"doi\":\"10.1016/j.disc.2025.114574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a simple graph on <em>n</em> vertices and <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the smallest positive eigenvalue of its adjacency matrix <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In [S. Rani and S. Barik, Upper bounds on the smallest positive eigenvalues of trees, Ann. Comb. 27(1) (2023) 19–29], the authors characterized the trees with small diameters having the maximum and minimum <em>τ</em>, respectively. In this article, we extend their work to the unicyclic graphs. We provide bounds for the smallest positive eigenvalue and obtain the graphs with the maximum and minimum <em>τ</em> among all the unicyclic graphs on <em>n</em> vertices having diameters 2 and 3, respectively. Furthermore, we characterize the graphs with the maximum <em>τ</em> among all the unicyclic graphs on <em>n</em> vertices having diameter 4. Finally, we characterize all the unicyclic graphs on <em>n</em> vertices with diameter at most 4 whose smallest positive eigenvalue is equal to <span><math><mfrac><mrow><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, the reciprocal of the golden ratio.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114574\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001827\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001827","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有n个顶点的简单图,τ(G)表示其邻接矩阵a (G)的最小正特征值。在[S。Rani和S. barick,树的最小正特征值的上界,Ann。梳子. 27(1)(2023)19-29],作者分别描述了具有最大和最小τ的小直径树。在本文中,我们将他们的工作扩展到单环图。我们给出了最小正特征值的界,并分别在n个直径为2和3的顶点上得到了所有单环图中τ值最大和最小的图。进一步,我们刻画了n个直径为4的顶点上所有单环图中τ最大的图。最后,我们刻画了n个顶点上的所有单环图,这些顶点的直径最多为4,其最小正特征值等于黄金比例的倒数5−12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for the smallest positive eigenvalue of unicyclic graphs with diameter at most 4
Let G be a simple graph on n vertices and τ(G) denote the smallest positive eigenvalue of its adjacency matrix A(G). In [S. Rani and S. Barik, Upper bounds on the smallest positive eigenvalues of trees, Ann. Comb. 27(1) (2023) 19–29], the authors characterized the trees with small diameters having the maximum and minimum τ, respectively. In this article, we extend their work to the unicyclic graphs. We provide bounds for the smallest positive eigenvalue and obtain the graphs with the maximum and minimum τ among all the unicyclic graphs on n vertices having diameters 2 and 3, respectively. Furthermore, we characterize the graphs with the maximum τ among all the unicyclic graphs on n vertices having diameter 4. Finally, we characterize all the unicyclic graphs on n vertices with diameter at most 4 whose smallest positive eigenvalue is equal to 512, the reciprocal of the golden ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信