{"title":"复杂图中因子的谱极值问题及其他","authors":"Ruifang Liu , Ao Fan , Jinlong Shu","doi":"10.1016/j.disc.2025.114593","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>toughness</em> <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mspace></mspace><mrow><mi>min</mi></mrow><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mi>S</mi><mspace></mspace><mtext>is a cut set of vertices in</mtext><mspace></mspace><mi>G</mi><mo>}</mo></math></span> for <span><math><mi>G</mi><mo>≇</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which was initially proposed by Chvátal in 1973. A graph <em>G</em> is called <em>t-tough</em> if <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>t</mi></math></span>. Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] presented a tight sufficient condition in terms of the spectral radius for a connected 1-tough graph to contain a connected 2-factor (Hamilton cycle). A natural and interesting problem arises: What is a tight spectral condition to guarantee the existence of factors among tough graphs?</div><div>A <em>spanning k-tree</em> of a connected graph <em>G</em> is a spanning tree with the degree of every vertex at most <em>k</em>, which is considered as a connected <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>]</mo></math></span>-factor. We in this paper provide a tight sufficient condition based on the spectral radius for a connected <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mi>η</mi></mrow></mfrac></math></span>-tough graph to contain a spanning <em>k</em>-tree, where <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> is an integer and <span><math><mi>η</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>.</div><div>Let <span><math><mi>b</mi><mo>≥</mo><mn>1</mn></math></span> be an integer. An <em>odd</em> <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span><em>-factor</em> of a graph <em>G</em> is a spanning subgraph <em>F</em> such that for each <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is odd and <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>≤</mo><mi>b</mi></math></span>. We propose a tight sufficient condition in terms of the spectral radius for a connected <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>b</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>-tough graph to contain an odd <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor. If <span><math><mi>b</mi><mo>=</mo><mn>1</mn></math></span>, an odd <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor is called a 1-factor (perfect matching). We also present a tight sufficient condition in terms of the spectral radius for a connected <span><math><mfrac><mrow><mi>l</mi></mrow><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>-tough graph to contain a 1-factor, where <span><math><mi>l</mi><mo>≥</mo><mn>1</mn></math></span> is an integer.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114593"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral extremal problems on factors in tough graphs, and beyond\",\"authors\":\"Ruifang Liu , Ao Fan , Jinlong Shu\",\"doi\":\"10.1016/j.disc.2025.114593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>toughness</em> <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mspace></mspace><mrow><mi>min</mi></mrow><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mi>S</mi><mspace></mspace><mtext>is a cut set of vertices in</mtext><mspace></mspace><mi>G</mi><mo>}</mo></math></span> for <span><math><mi>G</mi><mo>≇</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which was initially proposed by Chvátal in 1973. A graph <em>G</em> is called <em>t-tough</em> if <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>t</mi></math></span>. Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] presented a tight sufficient condition in terms of the spectral radius for a connected 1-tough graph to contain a connected 2-factor (Hamilton cycle). A natural and interesting problem arises: What is a tight spectral condition to guarantee the existence of factors among tough graphs?</div><div>A <em>spanning k-tree</em> of a connected graph <em>G</em> is a spanning tree with the degree of every vertex at most <em>k</em>, which is considered as a connected <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>]</mo></math></span>-factor. We in this paper provide a tight sufficient condition based on the spectral radius for a connected <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mi>η</mi></mrow></mfrac></math></span>-tough graph to contain a spanning <em>k</em>-tree, where <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> is an integer and <span><math><mi>η</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>.</div><div>Let <span><math><mi>b</mi><mo>≥</mo><mn>1</mn></math></span> be an integer. An <em>odd</em> <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span><em>-factor</em> of a graph <em>G</em> is a spanning subgraph <em>F</em> such that for each <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is odd and <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>≤</mo><mi>b</mi></math></span>. We propose a tight sufficient condition in terms of the spectral radius for a connected <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>b</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>-tough graph to contain an odd <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor. If <span><math><mi>b</mi><mo>=</mo><mn>1</mn></math></span>, an odd <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor is called a 1-factor (perfect matching). We also present a tight sufficient condition in terms of the spectral radius for a connected <span><math><mfrac><mrow><mi>l</mi></mrow><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>-tough graph to contain a 1-factor, where <span><math><mi>l</mi><mo>≥</mo><mn>1</mn></math></span> is an integer.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114593\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002018\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002018","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
韧性τ(G)=min{|S|c(G−S):Sis是G≇Kn的一个切点集inG},最早由Chvátal于1973年提出。当τ(G)≥t时,图G称为t-tough。Fan, Lin和Lu [European J. Combin. 110(2023) 103701]从谱半径的角度给出了连通1-坚韧图包含连通2因子(Hamilton环)的紧充分条件。一个自然而有趣的问题出现了:什么是紧谱条件来保证在坚韧图中因子的存在?连通图G的生成k树是一棵每个顶点的度数最多为k的生成树,它被认为是一个连通[1,k]因子。本文基于谱半径,给出了连通1k−η-tough图包含生成k树的紧充分条件,其中k≥3为整数,η={0,1}。设b≥1为整数。图G的奇数[1,b]因子是生成子图F,使得对于每个v∈v (G), dF(v)是奇数且1≤dF(v)≤b。对于连通的1b+1-坚韧图,我们提出了包含奇数[1,b]因子的谱半径的紧充分条件。如果b=1,奇数[1,b]因子称为1因子(完美匹配)。我们也给出了一个关于谱半径的紧充分条件,使得连通的1 +1-坚韧图包含一个1因子,其中l≥1是整数。
Spectral extremal problems on factors in tough graphs, and beyond
The toughness for , which was initially proposed by Chvátal in 1973. A graph G is called t-tough if . Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] presented a tight sufficient condition in terms of the spectral radius for a connected 1-tough graph to contain a connected 2-factor (Hamilton cycle). A natural and interesting problem arises: What is a tight spectral condition to guarantee the existence of factors among tough graphs?
A spanning k-tree of a connected graph G is a spanning tree with the degree of every vertex at most k, which is considered as a connected -factor. We in this paper provide a tight sufficient condition based on the spectral radius for a connected -tough graph to contain a spanning k-tree, where is an integer and .
Let be an integer. An odd-factor of a graph G is a spanning subgraph F such that for each , is odd and . We propose a tight sufficient condition in terms of the spectral radius for a connected -tough graph to contain an odd -factor. If , an odd -factor is called a 1-factor (perfect matching). We also present a tight sufficient condition in terms of the spectral radius for a connected -tough graph to contain a 1-factor, where is an integer.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.