正无穷维系统的极限情况容许性

IF 2.3 2区 数学 Q1 MATHEMATICS
Sahiba Arora , Jochen Glück , Lassi Paunonen , Felix L. Schwenninger
{"title":"正无穷维系统的极限情况容许性","authors":"Sahiba Arora ,&nbsp;Jochen Glück ,&nbsp;Lassi Paunonen ,&nbsp;Felix L. Schwenninger","doi":"10.1016/j.jde.2025.113435","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of positive infinite-dimensional linear systems, we systematically study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-admissible control and observation operators with respect to the limit-cases <span><math><mi>p</mi><mo>=</mo><mo>∞</mo></math></span> and <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>, respectively. This requires an in-depth understanding of the order structure on the extrapolation space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>, which we provide. These properties of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span> also enable us to discuss when zero-class admissibility is automatic. While those limit-cases are the weakest form of admissibility on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-scale, it is remarkable that they sometimes directly follow from order theoretic and geometric assumptions. Our assumptions on the geometries of the involved spaces are minimal.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113435"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit-case admissibility for positive infinite-dimensional systems\",\"authors\":\"Sahiba Arora ,&nbsp;Jochen Glück ,&nbsp;Lassi Paunonen ,&nbsp;Felix L. Schwenninger\",\"doi\":\"10.1016/j.jde.2025.113435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of positive infinite-dimensional linear systems, we systematically study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-admissible control and observation operators with respect to the limit-cases <span><math><mi>p</mi><mo>=</mo><mo>∞</mo></math></span> and <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>, respectively. This requires an in-depth understanding of the order structure on the extrapolation space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>, which we provide. These properties of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span> also enable us to discuss when zero-class admissibility is automatic. While those limit-cases are the weakest form of admissibility on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-scale, it is remarkable that they sometimes directly follow from order theoretic and geometric assumptions. Our assumptions on the geometries of the involved spaces are minimal.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"440 \",\"pages\":\"Article 113435\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004620\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004620","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在正无穷维线性系统中,系统地研究了极限情况下p=∞和p=1下的lp容许控制算子和观测算子。这需要深入了解外推空间X−1上的顺序结构,我们提供了。X−1的这些性质也使我们能够讨论零类可容许性是自动的。虽然这些极限情况是lp尺度上最弱的可容许性形式,但值得注意的是,它们有时直接遵循序理论和几何假设。我们对所涉及空间的几何形状的假设是最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit-case admissibility for positive infinite-dimensional systems
In the context of positive infinite-dimensional linear systems, we systematically study Lp-admissible control and observation operators with respect to the limit-cases p= and p=1, respectively. This requires an in-depth understanding of the order structure on the extrapolation space X1, which we provide. These properties of X1 also enable us to discuss when zero-class admissibility is automatic. While those limit-cases are the weakest form of admissibility on the Lp-scale, it is remarkable that they sometimes directly follow from order theoretic and geometric assumptions. Our assumptions on the geometries of the involved spaces are minimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信