Sahiba Arora , Jochen Glück , Lassi Paunonen , Felix L. Schwenninger
{"title":"正无穷维系统的极限情况容许性","authors":"Sahiba Arora , Jochen Glück , Lassi Paunonen , Felix L. Schwenninger","doi":"10.1016/j.jde.2025.113435","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of positive infinite-dimensional linear systems, we systematically study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-admissible control and observation operators with respect to the limit-cases <span><math><mi>p</mi><mo>=</mo><mo>∞</mo></math></span> and <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>, respectively. This requires an in-depth understanding of the order structure on the extrapolation space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>, which we provide. These properties of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span> also enable us to discuss when zero-class admissibility is automatic. While those limit-cases are the weakest form of admissibility on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-scale, it is remarkable that they sometimes directly follow from order theoretic and geometric assumptions. Our assumptions on the geometries of the involved spaces are minimal.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113435"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit-case admissibility for positive infinite-dimensional systems\",\"authors\":\"Sahiba Arora , Jochen Glück , Lassi Paunonen , Felix L. Schwenninger\",\"doi\":\"10.1016/j.jde.2025.113435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of positive infinite-dimensional linear systems, we systematically study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-admissible control and observation operators with respect to the limit-cases <span><math><mi>p</mi><mo>=</mo><mo>∞</mo></math></span> and <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>, respectively. This requires an in-depth understanding of the order structure on the extrapolation space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>, which we provide. These properties of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span> also enable us to discuss when zero-class admissibility is automatic. While those limit-cases are the weakest form of admissibility on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-scale, it is remarkable that they sometimes directly follow from order theoretic and geometric assumptions. Our assumptions on the geometries of the involved spaces are minimal.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"440 \",\"pages\":\"Article 113435\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004620\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004620","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Limit-case admissibility for positive infinite-dimensional systems
In the context of positive infinite-dimensional linear systems, we systematically study -admissible control and observation operators with respect to the limit-cases and , respectively. This requires an in-depth understanding of the order structure on the extrapolation space , which we provide. These properties of also enable us to discuss when zero-class admissibility is automatic. While those limit-cases are the weakest form of admissibility on the -scale, it is remarkable that they sometimes directly follow from order theoretic and geometric assumptions. Our assumptions on the geometries of the involved spaces are minimal.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics