Michael C. Jollands , Kevin Bishop , Tyler Smith , Shiyun Jin , Etienne Balan
{"title":"刚玉(Al2O3)中Sn(±Ti)和H相关缺陷","authors":"Michael C. Jollands , Kevin Bishop , Tyler Smith , Shiyun Jin , Etienne Balan","doi":"10.1016/j.mtla.2025.102434","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms by which H is incorporated into corundum crystals containing elevated concentrations of Sn is studied using a combination of experimental infrared spectra and density functional theory (DFT) calculations. The spectra (both bulk and spatially resolved), along with trace element concentrations, were recorded from samples passing through the laboratories of the Gemological Institute of America. We propose that bands in the FTIR spectra of corundum at 3197, 3235, 3249, 3262 and 3285 cm<sup>-1</sup> can all be attributed to O<img>H stretching associated with defects including one or two Sn<sup>4+</sup>, <em>H</em><sup>+</sup> and Al-site vacancies. Some of the defects also include Ti<sup>4+</sup>, i.e. are mixed Sn-Ti defects. Specifically, we attribute the following bands to these defects: 3197 and 3235 cm<sup>-1</sup>: <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mi>V</mi><mrow><mrow><mi>Al</mi></mrow></mrow><mrow><mo>″</mo><mo>′</mo></mrow></msubsup><msubsup><mrow><mi>OH</mi></mrow><mrow><mrow><mi>o</mi></mrow></mrow><mo>•</mo></msubsup><mo>)</mo></mrow><mo>′</mo></msup></math></span> (two configurations); 3249 cm<sup>-1</sup>: <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mi>V</mi><mrow><mrow><mi>Al</mi></mrow></mrow><mrow><mo>″</mo><mo>′</mo></mrow></msubsup><msubsup><mrow><mi>OH</mi></mrow><mrow><mrow><mi>o</mi></mrow></mrow><mo>•</mo></msubsup><mo>)</mo></mrow><mrow><mo>×</mo><mrow></mrow></mrow></msup></math></span><em>;</em> 3262 and 3285 cm<sup>-1</sup>: <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mrow><mi>Ti</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mi>V</mi><mrow><mrow><mi>Al</mi></mrow></mrow><mrow><mo>″</mo><mo>′</mo></mrow></msubsup><msubsup><mrow><mi>OH</mi></mrow><mrow><mrow><mi>o</mi></mrow></mrow><mo>•</mo></msubsup><mo>)</mo></mrow><mrow><mo>×</mo><mrow></mrow></mrow></msup></math></span> (two configurations). All bands show similar polarization behavior, with the strongest absorption when the electric vector is perpendicular to the <em>c</em>-axis.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"41 ","pages":"Article 102434"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defects associated with Sn (±Ti) and H in corundum (Al2O3)\",\"authors\":\"Michael C. Jollands , Kevin Bishop , Tyler Smith , Shiyun Jin , Etienne Balan\",\"doi\":\"10.1016/j.mtla.2025.102434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanisms by which H is incorporated into corundum crystals containing elevated concentrations of Sn is studied using a combination of experimental infrared spectra and density functional theory (DFT) calculations. The spectra (both bulk and spatially resolved), along with trace element concentrations, were recorded from samples passing through the laboratories of the Gemological Institute of America. We propose that bands in the FTIR spectra of corundum at 3197, 3235, 3249, 3262 and 3285 cm<sup>-1</sup> can all be attributed to O<img>H stretching associated with defects including one or two Sn<sup>4+</sup>, <em>H</em><sup>+</sup> and Al-site vacancies. Some of the defects also include Ti<sup>4+</sup>, i.e. are mixed Sn-Ti defects. Specifically, we attribute the following bands to these defects: 3197 and 3235 cm<sup>-1</sup>: <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mi>V</mi><mrow><mrow><mi>Al</mi></mrow></mrow><mrow><mo>″</mo><mo>′</mo></mrow></msubsup><msubsup><mrow><mi>OH</mi></mrow><mrow><mrow><mi>o</mi></mrow></mrow><mo>•</mo></msubsup><mo>)</mo></mrow><mo>′</mo></msup></math></span> (two configurations); 3249 cm<sup>-1</sup>: <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mi>V</mi><mrow><mrow><mi>Al</mi></mrow></mrow><mrow><mo>″</mo><mo>′</mo></mrow></msubsup><msubsup><mrow><mi>OH</mi></mrow><mrow><mrow><mi>o</mi></mrow></mrow><mo>•</mo></msubsup><mo>)</mo></mrow><mrow><mo>×</mo><mrow></mrow></mrow></msup></math></span><em>;</em> 3262 and 3285 cm<sup>-1</sup>: <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Sn</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mrow><mi>Ti</mi></mrow><mrow><mrow><mi>Al</mi></mrow></mrow><mo>•</mo></msubsup><msubsup><mi>V</mi><mrow><mrow><mi>Al</mi></mrow></mrow><mrow><mo>″</mo><mo>′</mo></mrow></msubsup><msubsup><mrow><mi>OH</mi></mrow><mrow><mrow><mi>o</mi></mrow></mrow><mo>•</mo></msubsup><mo>)</mo></mrow><mrow><mo>×</mo><mrow></mrow></mrow></msup></math></span> (two configurations). All bands show similar polarization behavior, with the strongest absorption when the electric vector is perpendicular to the <em>c</em>-axis.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"41 \",\"pages\":\"Article 102434\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152925001024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925001024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Defects associated with Sn (±Ti) and H in corundum (Al2O3)
The mechanisms by which H is incorporated into corundum crystals containing elevated concentrations of Sn is studied using a combination of experimental infrared spectra and density functional theory (DFT) calculations. The spectra (both bulk and spatially resolved), along with trace element concentrations, were recorded from samples passing through the laboratories of the Gemological Institute of America. We propose that bands in the FTIR spectra of corundum at 3197, 3235, 3249, 3262 and 3285 cm-1 can all be attributed to OH stretching associated with defects including one or two Sn4+, H+ and Al-site vacancies. Some of the defects also include Ti4+, i.e. are mixed Sn-Ti defects. Specifically, we attribute the following bands to these defects: 3197 and 3235 cm-1: (two configurations); 3249 cm-1: ; 3262 and 3285 cm-1: (two configurations). All bands show similar polarization behavior, with the strongest absorption when the electric vector is perpendicular to the c-axis.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).