求解二维空间分数扩散方程的贪心部分块雅可比光滑多重网格法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Kang-Ya Lu , Xiao-Yun Zhang
{"title":"求解二维空间分数扩散方程的贪心部分块雅可比光滑多重网格法","authors":"Kang-Ya Lu ,&nbsp;Xiao-Yun Zhang","doi":"10.1016/j.camwa.2025.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the block Jacobi splitting, a kind of <em>greedy partial block Jacobi</em> (<strong>GPBJ</strong>) iteration method is constructed by greedily selecting the blocks with relatively large residuals and performing the block Jacobi iteration on the selected blocks. Theoretical analysis demonstrates that the GPBJ iteration is unconditionally convergent if the coefficient matrix of the linear system is <em>H</em>-matrix. Then combining with the alternating direction strategy, the GPBJ smoothed multigrid method is designed to solve the discrete linear system of two-dimensional space-fractional diffusion equations, where the coefficient matrix is strictly diagonally dominant. Numerical experiments indicate that the multigrid method smoothed by the GPBJ iteration can significantly reduce the computation time for solving the considered discrete linear system.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"191 ","pages":"Pages 245-254"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multigrid method with greedy partial block Jacobi smoother for solving two-dimensional space-fractional diffusion equations\",\"authors\":\"Kang-Ya Lu ,&nbsp;Xiao-Yun Zhang\",\"doi\":\"10.1016/j.camwa.2025.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the block Jacobi splitting, a kind of <em>greedy partial block Jacobi</em> (<strong>GPBJ</strong>) iteration method is constructed by greedily selecting the blocks with relatively large residuals and performing the block Jacobi iteration on the selected blocks. Theoretical analysis demonstrates that the GPBJ iteration is unconditionally convergent if the coefficient matrix of the linear system is <em>H</em>-matrix. Then combining with the alternating direction strategy, the GPBJ smoothed multigrid method is designed to solve the discrete linear system of two-dimensional space-fractional diffusion equations, where the coefficient matrix is strictly diagonally dominant. Numerical experiments indicate that the multigrid method smoothed by the GPBJ iteration can significantly reduce the computation time for solving the considered discrete linear system.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"191 \",\"pages\":\"Pages 245-254\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212500210X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500210X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在分块Jacobi分割的基础上,通过贪婪地选择残差较大的块,对所选择的块进行分块Jacobi迭代,构造了一种贪婪偏块Jacobi (GPBJ)迭代方法。理论分析表明,当线性系统的系数矩阵为h矩阵时,GPBJ迭代是无条件收敛的。然后结合交替方向策略,设计了GPBJ光滑多重网格法,求解系数矩阵严格对角占优的二维空间分数阶扩散方程离散线性系统。数值实验表明,采用GPBJ迭代光滑的多重网格方法可以显著减少所考虑的离散线性系统的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multigrid method with greedy partial block Jacobi smoother for solving two-dimensional space-fractional diffusion equations
Based on the block Jacobi splitting, a kind of greedy partial block Jacobi (GPBJ) iteration method is constructed by greedily selecting the blocks with relatively large residuals and performing the block Jacobi iteration on the selected blocks. Theoretical analysis demonstrates that the GPBJ iteration is unconditionally convergent if the coefficient matrix of the linear system is H-matrix. Then combining with the alternating direction strategy, the GPBJ smoothed multigrid method is designed to solve the discrete linear system of two-dimensional space-fractional diffusion equations, where the coefficient matrix is strictly diagonally dominant. Numerical experiments indicate that the multigrid method smoothed by the GPBJ iteration can significantly reduce the computation time for solving the considered discrete linear system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信