纯纳什均衡结果枚举的逆向归纳法推广

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Paolo Zappalà , Amal Benhamiche , Matthieu Chardy , Francesco De Pellegrini , Rosa Figueiredo
{"title":"纯纳什均衡结果枚举的逆向归纳法推广","authors":"Paolo Zappalà ,&nbsp;Amal Benhamiche ,&nbsp;Matthieu Chardy ,&nbsp;Francesco De Pellegrini ,&nbsp;Rosa Figueiredo","doi":"10.1016/j.orl.2025.107305","DOIUrl":null,"url":null,"abstract":"<div><div>Extensive-form games with perfect information admit at least one Nash equilibrium. The backward induction algorithm identifies in linear time a Nash equilibrium of the game, called subgame perfect. We introduce an extension of the backward induction algorithm which is the first to identify all the outcomes of pure Nash equilibria of the game in linear time with respect to the size of the game.</div></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"61 ","pages":"Article 107305"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of backward induction for the enumeration of pure Nash equilibria outcomes\",\"authors\":\"Paolo Zappalà ,&nbsp;Amal Benhamiche ,&nbsp;Matthieu Chardy ,&nbsp;Francesco De Pellegrini ,&nbsp;Rosa Figueiredo\",\"doi\":\"10.1016/j.orl.2025.107305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extensive-form games with perfect information admit at least one Nash equilibrium. The backward induction algorithm identifies in linear time a Nash equilibrium of the game, called subgame perfect. We introduce an extension of the backward induction algorithm which is the first to identify all the outcomes of pure Nash equilibria of the game in linear time with respect to the size of the game.</div></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"61 \",\"pages\":\"Article 107305\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637725000665\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637725000665","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

具有完全信息的广义博弈至少存在一个纳什均衡。逆向归纳法在线性时间内识别出博弈的纳什均衡,称为子博弈完美。我们引入了逆向归纳算法的扩展,这是第一个在线性时间内识别关于游戏大小的游戏的纯纳什均衡的所有结果的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of backward induction for the enumeration of pure Nash equilibria outcomes
Extensive-form games with perfect information admit at least one Nash equilibrium. The backward induction algorithm identifies in linear time a Nash equilibrium of the game, called subgame perfect. We introduce an extension of the backward induction algorithm which is the first to identify all the outcomes of pure Nash equilibria of the game in linear time with respect to the size of the game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信