静态磁场中分子的相空间电子哈密顿量。总伪动量和角动量守恒

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Mansi Bhati, Zhen Tao, Xuezhi Bian, Jonathan Rawlinson, Robert Littlejohn and Joseph E. Subotnik*, 
{"title":"静态磁场中分子的相空间电子哈密顿量。总伪动量和角动量守恒","authors":"Mansi Bhati,&nbsp;Zhen Tao,&nbsp;Xuezhi Bian,&nbsp;Jonathan Rawlinson,&nbsp;Robert Littlejohn and Joseph E. Subotnik*,&nbsp;","doi":"10.1021/acs.jpca.4c0790410.1021/acs.jpca.4c07904","DOIUrl":null,"url":null,"abstract":"<p >We develop a phase-space electronic structure theory of molecules in magnetic fields. For a system of electrons in a magnetic field with vector potential <b><i>A</i></b>(<b><i>r</i></b>̂), the usual Born–Oppenheimer Hamiltonian is the sum of the nuclear kinetic energy and the electronic Hamiltonian, (<b><i>P</i></b> – <i>q<b>A</b></i>(<i><b>X</b></i>))<sup>2</sup>/2<i>M</i> + <i>Ĥ<sub>e</sub></i>(<b><i>X</i></b>) (where <i>q</i> is a nuclear charge). To include the effects of coupled nuclear-electron motion in the presence of a magnetic field, we propose that the proper phase-space electronic structure Hamiltonian will be of the form (<b><i>P</i></b> – <i>q</i><sup>eff</sup><i><b>A</b></i>(<i><b>X</b></i>) – <i>e</i><b>Γ</b>̂)<sup>2</sup>/2<i>M</i> + <i>Ĥ<sub>e</sub></i>(<b><i>X</i></b>). Here, <i>q</i><sup>eff</sup> represents the <i>screened</i> nuclear charges and the <b>Γ</b>̂ term captures the local pseudomomentum of the electrons. This form reproduces exactly the energy levels for a hydrogen atom in a magnetic field; moreover, single-surface dynamics along the eigenstates are guaranteed to conserve both (i) the total pseudomomentum and (ii) the total angular momentum in the direction of the magnetic field. This Hamiltonian form can be immediately implemented within modern electronic structure packages (where the electronic orbitals will now depend both on nuclear position (<b><i>X</i></b>) and nuclear momentum (<b><i>P</i></b>)). One can expect to find novel beyond Born–Oppenheimer magnetic field effects for strong enough fields and nonadiabatic systems.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 20","pages":"4555–4572 4555–4572"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Phase-Space Electronic Hamiltonian for Molecules in a Static Magnetic Field. I: Conservation of Total Pseudomomentum and Angular Momentum\",\"authors\":\"Mansi Bhati,&nbsp;Zhen Tao,&nbsp;Xuezhi Bian,&nbsp;Jonathan Rawlinson,&nbsp;Robert Littlejohn and Joseph E. Subotnik*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.4c0790410.1021/acs.jpca.4c07904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We develop a phase-space electronic structure theory of molecules in magnetic fields. For a system of electrons in a magnetic field with vector potential <b><i>A</i></b>(<b><i>r</i></b>̂), the usual Born–Oppenheimer Hamiltonian is the sum of the nuclear kinetic energy and the electronic Hamiltonian, (<b><i>P</i></b> – <i>q<b>A</b></i>(<i><b>X</b></i>))<sup>2</sup>/2<i>M</i> + <i>Ĥ<sub>e</sub></i>(<b><i>X</i></b>) (where <i>q</i> is a nuclear charge). To include the effects of coupled nuclear-electron motion in the presence of a magnetic field, we propose that the proper phase-space electronic structure Hamiltonian will be of the form (<b><i>P</i></b> – <i>q</i><sup>eff</sup><i><b>A</b></i>(<i><b>X</b></i>) – <i>e</i><b>Γ</b>̂)<sup>2</sup>/2<i>M</i> + <i>Ĥ<sub>e</sub></i>(<b><i>X</i></b>). Here, <i>q</i><sup>eff</sup> represents the <i>screened</i> nuclear charges and the <b>Γ</b>̂ term captures the local pseudomomentum of the electrons. This form reproduces exactly the energy levels for a hydrogen atom in a magnetic field; moreover, single-surface dynamics along the eigenstates are guaranteed to conserve both (i) the total pseudomomentum and (ii) the total angular momentum in the direction of the magnetic field. This Hamiltonian form can be immediately implemented within modern electronic structure packages (where the electronic orbitals will now depend both on nuclear position (<b><i>X</i></b>) and nuclear momentum (<b><i>P</i></b>)). One can expect to find novel beyond Born–Oppenheimer magnetic field effects for strong enough fields and nonadiabatic systems.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 20\",\"pages\":\"4555–4572 4555–4572\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.4c07904\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c07904","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了磁场中分子的相空间电子结构理论。对于磁场中具有矢量势a (r)的电子系统,通常的Born-Oppenheimer哈密顿量是核动能和电子哈密顿量(P - qA(X))2/2M + Ĥe(X)(其中q是核电荷)的总和。为了包括在磁场存在下的耦合核电子运动的影响,我们提出适当的相空间电子结构哈密顿量为(P - qeffA(X) - eΓ²)2/2M + Ĥe(X)。在这里,qeff表示被屏蔽的核电荷,Γ´项表示电子的局部伪动量。这种形式精确地再现了氢原子在磁场中的能级;此外,沿本征态的单表面动力学保证在磁场方向上保持(i)总伪动量和(ii)总角动量。这种哈密顿形式可以立即在现代电子结构包中实现(电子轨道现在依赖于核位置(X)和核动量(P))。人们可以期待在足够强的磁场和非绝热系统中发现比玻恩-奥本海默磁场效应更新颖的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Phase-Space Electronic Hamiltonian for Molecules in a Static Magnetic Field. I: Conservation of Total Pseudomomentum and Angular Momentum

A Phase-Space Electronic Hamiltonian for Molecules in a Static Magnetic Field. I: Conservation of Total Pseudomomentum and Angular Momentum

We develop a phase-space electronic structure theory of molecules in magnetic fields. For a system of electrons in a magnetic field with vector potential A(r̂), the usual Born–Oppenheimer Hamiltonian is the sum of the nuclear kinetic energy and the electronic Hamiltonian, (PqA(X))2/2M + Ĥe(X) (where q is a nuclear charge). To include the effects of coupled nuclear-electron motion in the presence of a magnetic field, we propose that the proper phase-space electronic structure Hamiltonian will be of the form (PqeffA(X) – eΓ̂)2/2M + Ĥe(X). Here, qeff represents the screened nuclear charges and the Γ̂ term captures the local pseudomomentum of the electrons. This form reproduces exactly the energy levels for a hydrogen atom in a magnetic field; moreover, single-surface dynamics along the eigenstates are guaranteed to conserve both (i) the total pseudomomentum and (ii) the total angular momentum in the direction of the magnetic field. This Hamiltonian form can be immediately implemented within modern electronic structure packages (where the electronic orbitals will now depend both on nuclear position (X) and nuclear momentum (P)). One can expect to find novel beyond Born–Oppenheimer magnetic field effects for strong enough fields and nonadiabatic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信