CO2RR在球磨CoPc-CNT电催化剂上对甲醇的增强机理:共价锚定策略

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Tianxiang Guo*, Xilai Wang, Baijiang Liu and Zijun Men, 
{"title":"CO2RR在球磨CoPc-CNT电催化剂上对甲醇的增强机理:共价锚定策略","authors":"Tianxiang Guo*,&nbsp;Xilai Wang,&nbsp;Baijiang Liu and Zijun Men,&nbsp;","doi":"10.1021/acs.energyfuels.5c0067910.1021/acs.energyfuels.5c00679","DOIUrl":null,"url":null,"abstract":"<p >This study developed a covalent anchoring strategy to synthesize a ball-milled cobalt phthalocyanine-carbon nanotubes (CoPc-CNT) hybrid electrocatalyst for efficient CO<sub>2</sub>-to-methanol conversion. The catalyst was systematically characterized using scanning electron microscopy/transmission electron microscopy (SEM/TEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, UV–vis spectroscopy, Raman spectroscopy (RS), and X-ray photoelectron spectroscopy (XPS) to investigate the surface morphology and structure. Then, its electrochemical performance was evaluated through cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), headspace gas chromatography (HS-GC), and proton nuclear magnetic resonance (<sup>1</sup>H-NMR), demonstrating a 40% improvement in Faradaic efficiency and an 80% enhancement in partial current density for methanol production compared with its noncovalent counterpart. Mechanistic investigations revealed that covalent grafting synergized with ball milling achieved the optimization of interfacial architecture by enhancing CoPc dispersion on carbon nanotubes (CNT), strengthening π–π electronic coupling, narrowing the band gap, and reducing charge-transfer resistance. Subsequently, the critical reaction steps were accelerated, such as facilitating the initial proton-coupled electron (H<sup>+</sup>/e<sup>–</sup>) transfer through increased electroactive Co–N<sub>4</sub> site density, promoting *CO protonation kinetics, and then lowering the energy barriers such as favorable *CH<sub>3</sub>OH desorption through redistribution of the highest occupied molecular orbital (HOMO) from CNT to the phthalocyanine macrocycle. Density functional theory (DFT) calculations validated the proposed reaction pathway: *CO<sub>2</sub>(g) → *CO<sub>2</sub> → *CO<sub>2</sub><sup>–</sup> → *COOH → *CO → *CHO → *OCH<sub>2</sub> → CH<sub>2</sub>OH → CH<sub>3</sub>OH → CH<sub>3</sub>OH(l). This work provides a scalable mechanochemical approach for constructing stable molecular-electrode interfaces and atomic-level insights into how covalent engineering regulates intermediate binding energies and charge-transfer dynamics for selective formation of methanol.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 20","pages":"9516–9531 9516–9531"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement Mechanism of CO2RR toward Methanol on a Ball-Milled CoPc-CNT Electrocatalyst: A Covalent Anchoring Strategy\",\"authors\":\"Tianxiang Guo*,&nbsp;Xilai Wang,&nbsp;Baijiang Liu and Zijun Men,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.5c0067910.1021/acs.energyfuels.5c00679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study developed a covalent anchoring strategy to synthesize a ball-milled cobalt phthalocyanine-carbon nanotubes (CoPc-CNT) hybrid electrocatalyst for efficient CO<sub>2</sub>-to-methanol conversion. The catalyst was systematically characterized using scanning electron microscopy/transmission electron microscopy (SEM/TEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, UV–vis spectroscopy, Raman spectroscopy (RS), and X-ray photoelectron spectroscopy (XPS) to investigate the surface morphology and structure. Then, its electrochemical performance was evaluated through cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), headspace gas chromatography (HS-GC), and proton nuclear magnetic resonance (<sup>1</sup>H-NMR), demonstrating a 40% improvement in Faradaic efficiency and an 80% enhancement in partial current density for methanol production compared with its noncovalent counterpart. Mechanistic investigations revealed that covalent grafting synergized with ball milling achieved the optimization of interfacial architecture by enhancing CoPc dispersion on carbon nanotubes (CNT), strengthening π–π electronic coupling, narrowing the band gap, and reducing charge-transfer resistance. Subsequently, the critical reaction steps were accelerated, such as facilitating the initial proton-coupled electron (H<sup>+</sup>/e<sup>–</sup>) transfer through increased electroactive Co–N<sub>4</sub> site density, promoting *CO protonation kinetics, and then lowering the energy barriers such as favorable *CH<sub>3</sub>OH desorption through redistribution of the highest occupied molecular orbital (HOMO) from CNT to the phthalocyanine macrocycle. Density functional theory (DFT) calculations validated the proposed reaction pathway: *CO<sub>2</sub>(g) → *CO<sub>2</sub> → *CO<sub>2</sub><sup>–</sup> → *COOH → *CO → *CHO → *OCH<sub>2</sub> → CH<sub>2</sub>OH → CH<sub>3</sub>OH → CH<sub>3</sub>OH(l). This work provides a scalable mechanochemical approach for constructing stable molecular-electrode interfaces and atomic-level insights into how covalent engineering regulates intermediate binding energies and charge-transfer dynamics for selective formation of methanol.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 20\",\"pages\":\"9516–9531 9516–9531\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00679\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00679","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种共价锚定策略来合成球磨酞菁钴-碳纳米管(CoPc-CNT)混合电催化剂,用于高效的二氧化碳到甲醇转化。采用扫描电镜/透射电镜(SEM/TEM)、能量色散光谱(EDS)、傅里叶变换红外光谱(FT-IR)、紫外可见光谱(UV-vis)、拉曼光谱(RS)和x射线光电子能谱(XPS)对催化剂的表面形貌和结构进行了系统表征。然后,通过循环伏安法(CV)、线性扫描伏安法(LSV)、电化学阻抗谱(EIS)、顶空气相色谱法(HS-GC)和质子核磁共振(1H-NMR)对其电化学性能进行了评估,结果表明,与非共价甲醇相比,法拉第效率提高了40%,偏电流密度提高了80%。机理研究表明,共价接枝与球磨协同作用通过增强CoPc在碳纳米管(CNT)上的分散、增强π -π电子耦合、缩小带隙、降低电荷转移电阻等方式实现了界面结构的优化。随后,加速了关键反应步骤,如通过增加电活性CO - n4位点密度促进初始质子耦合电子(H+/e -)转移,促进*CO质子化动力学,然后降低能量垒,如通过将最高已占据分子轨道(HOMO)从碳纳米管重新分配到酞菁大环有利于*CH3OH脱附。密度泛函理论(DFT)计算验证了所提出的反应路径:*CO2(g)→*CO2→*CO2 -→*COOH→*CO→*CHO→*OCH2→CH2OH→CH3OH→CH3OH(l)。这项工作为构建稳定的分子电极界面提供了一种可扩展的机械化学方法,并在原子水平上深入了解共价工程如何调节中间结合能和选择性形成甲醇的电荷转移动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancement Mechanism of CO2RR toward Methanol on a Ball-Milled CoPc-CNT Electrocatalyst: A Covalent Anchoring Strategy

Enhancement Mechanism of CO2RR toward Methanol on a Ball-Milled CoPc-CNT Electrocatalyst: A Covalent Anchoring Strategy

This study developed a covalent anchoring strategy to synthesize a ball-milled cobalt phthalocyanine-carbon nanotubes (CoPc-CNT) hybrid electrocatalyst for efficient CO2-to-methanol conversion. The catalyst was systematically characterized using scanning electron microscopy/transmission electron microscopy (SEM/TEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, UV–vis spectroscopy, Raman spectroscopy (RS), and X-ray photoelectron spectroscopy (XPS) to investigate the surface morphology and structure. Then, its electrochemical performance was evaluated through cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), headspace gas chromatography (HS-GC), and proton nuclear magnetic resonance (1H-NMR), demonstrating a 40% improvement in Faradaic efficiency and an 80% enhancement in partial current density for methanol production compared with its noncovalent counterpart. Mechanistic investigations revealed that covalent grafting synergized with ball milling achieved the optimization of interfacial architecture by enhancing CoPc dispersion on carbon nanotubes (CNT), strengthening π–π electronic coupling, narrowing the band gap, and reducing charge-transfer resistance. Subsequently, the critical reaction steps were accelerated, such as facilitating the initial proton-coupled electron (H+/e) transfer through increased electroactive Co–N4 site density, promoting *CO protonation kinetics, and then lowering the energy barriers such as favorable *CH3OH desorption through redistribution of the highest occupied molecular orbital (HOMO) from CNT to the phthalocyanine macrocycle. Density functional theory (DFT) calculations validated the proposed reaction pathway: *CO2(g) → *CO2 → *CO2 → *COOH → *CO → *CHO → *OCH2 → CH2OH → CH3OH → CH3OH(l). This work provides a scalable mechanochemical approach for constructing stable molecular-electrode interfaces and atomic-level insights into how covalent engineering regulates intermediate binding energies and charge-transfer dynamics for selective formation of methanol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信