氯化胆碱/水深共晶溶剂中的z键:x射线/中子散射和密度泛函理论计算

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Keke Chai, Toshio Yamaguchi*, Taisen Zuo, Caijuan Shi, Kazutaka Ikeda, Yusuke Sanada and Yongquan Zhou*, 
{"title":"氯化胆碱/水深共晶溶剂中的z键:x射线/中子散射和密度泛函理论计算","authors":"Keke Chai,&nbsp;Toshio Yamaguchi*,&nbsp;Taisen Zuo,&nbsp;Caijuan Shi,&nbsp;Kazutaka Ikeda,&nbsp;Yusuke Sanada and Yongquan Zhou*,&nbsp;","doi":"10.1021/acs.jpclett.5c0089710.1021/acs.jpclett.5c00897","DOIUrl":null,"url":null,"abstract":"<p >Z-bond, a new weak interaction that couples H-bond and electrostatic interactions, plays an important role in ionic liquid and deep eutectic solvent (DES) formation. However, little direct experimental observation of the Z-bonds is available. In the present work, X-ray scattering (XRS) and isotope-substituted neutron scattering (ISNS) multi-data reverse driven all atomic modeling [empirical potential structure refinement (EPSR)] was employed to elucidate the microstructure of choline chloride (ChCl)/3H<sub>2</sub>O DES. The results show that Z-bonds are the determinative driving force for Ch<sup>+</sup> solvation, while H-bonds directly drive Cl<sup>–</sup> solvation. Density functional theory (DFT) calculations confirm both bond motifs and quantify their strengths. H-bonds facilitate the formation of longer chains and larger rings, whereas Z-bonds predominantly result in the formation of medium-length chains and smaller rings. The size distribution of chains and rings formed by Z-bonds significantly surpasses that of H-bonds. Thus, the Z-bonds result in a lower diffusion coefficient of Ch<sup>+</sup> [(0.0336 ± 0.0011) × 10<sup>–5</sup> cm<sup>2</sup>/s] than that of Cl<sup>–</sup> [(0.0651 ± 0.0013) × 10<sup>–5</sup> cm<sup>2</sup>/s], emphasizing the efficacy of Z-bond structures in the modulation of transport properties.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 20","pages":"5091–5100 5091–5100"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z-Bonds in Choline Chloride/Water Deep Eutectic Solvent: X-ray/Neutron Scattering and Density Functional Theory Calculations\",\"authors\":\"Keke Chai,&nbsp;Toshio Yamaguchi*,&nbsp;Taisen Zuo,&nbsp;Caijuan Shi,&nbsp;Kazutaka Ikeda,&nbsp;Yusuke Sanada and Yongquan Zhou*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c0089710.1021/acs.jpclett.5c00897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Z-bond, a new weak interaction that couples H-bond and electrostatic interactions, plays an important role in ionic liquid and deep eutectic solvent (DES) formation. However, little direct experimental observation of the Z-bonds is available. In the present work, X-ray scattering (XRS) and isotope-substituted neutron scattering (ISNS) multi-data reverse driven all atomic modeling [empirical potential structure refinement (EPSR)] was employed to elucidate the microstructure of choline chloride (ChCl)/3H<sub>2</sub>O DES. The results show that Z-bonds are the determinative driving force for Ch<sup>+</sup> solvation, while H-bonds directly drive Cl<sup>–</sup> solvation. Density functional theory (DFT) calculations confirm both bond motifs and quantify their strengths. H-bonds facilitate the formation of longer chains and larger rings, whereas Z-bonds predominantly result in the formation of medium-length chains and smaller rings. The size distribution of chains and rings formed by Z-bonds significantly surpasses that of H-bonds. Thus, the Z-bonds result in a lower diffusion coefficient of Ch<sup>+</sup> [(0.0336 ± 0.0011) × 10<sup>–5</sup> cm<sup>2</sup>/s] than that of Cl<sup>–</sup> [(0.0651 ± 0.0013) × 10<sup>–5</sup> cm<sup>2</sup>/s], emphasizing the efficacy of Z-bond structures in the modulation of transport properties.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 20\",\"pages\":\"5091–5100 5091–5100\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00897\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00897","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

z键是一种耦合氢键和静电相互作用的新型弱相互作用,在离子液体和深共晶溶剂(DES)的形成中起着重要作用。然而,对z键的直接实验观察很少。本文采用x射线散射(XRS)和同位素取代中子散射(ISNS)多数据反驱动全原子模型[经验电位结构精化(EPSR)]对氯化胆碱(ChCl)/3H2O DES的微观结构进行了研究。结果表明,z键是Ch+溶剂化的决定性驱动力,而h键直接驱动Cl -溶剂化。密度泛函理论(DFT)的计算证实了键基序和量化它们的强度。氢键有利于形成较长的链和较大的环,而z键主要形成中等长度的链和较小的环。z键形成的链和环的尺寸分布明显优于h键。因此,z键导致Ch+的扩散系数[(0.0336±0.0011)× 10-5 cm2/s]低于Cl -的扩散系数[(0.0651±0.0013)× 10-5 cm2/s],强调了z键结构在调节输运性质中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Z-Bonds in Choline Chloride/Water Deep Eutectic Solvent: X-ray/Neutron Scattering and Density Functional Theory Calculations

Z-Bonds in Choline Chloride/Water Deep Eutectic Solvent: X-ray/Neutron Scattering and Density Functional Theory Calculations

Z-bond, a new weak interaction that couples H-bond and electrostatic interactions, plays an important role in ionic liquid and deep eutectic solvent (DES) formation. However, little direct experimental observation of the Z-bonds is available. In the present work, X-ray scattering (XRS) and isotope-substituted neutron scattering (ISNS) multi-data reverse driven all atomic modeling [empirical potential structure refinement (EPSR)] was employed to elucidate the microstructure of choline chloride (ChCl)/3H2O DES. The results show that Z-bonds are the determinative driving force for Ch+ solvation, while H-bonds directly drive Cl solvation. Density functional theory (DFT) calculations confirm both bond motifs and quantify their strengths. H-bonds facilitate the formation of longer chains and larger rings, whereas Z-bonds predominantly result in the formation of medium-length chains and smaller rings. The size distribution of chains and rings formed by Z-bonds significantly surpasses that of H-bonds. Thus, the Z-bonds result in a lower diffusion coefficient of Ch+ [(0.0336 ± 0.0011) × 10–5 cm2/s] than that of Cl [(0.0651 ± 0.0013) × 10–5 cm2/s], emphasizing the efficacy of Z-bond structures in the modulation of transport properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信