FTIR和机器学习揭示生物炭的稳定性

Monica A. McCall*, Jonathan S. Watson, Jonathan S. W. Tan and Mark A. Sephton, 
{"title":"FTIR和机器学习揭示生物炭的稳定性","authors":"Monica A. McCall*,&nbsp;Jonathan S. Watson,&nbsp;Jonathan S. W. Tan and Mark A. Sephton,&nbsp;","doi":"10.1021/acssusresmgt.5c0010410.1021/acssusresmgt.5c00104","DOIUrl":null,"url":null,"abstract":"<p >Biochar is a carbon-rich and environmentally recalcitrant material, with strong potential for climate change mitigation. There is a need for rapid and accessible estimations of biochar stability, the resistance to biotic and abiotic degradation in soil. This study builds on previous work by integrating Fourier-transform infrared spectroscopy (FTIR) data with predictive modeling to estimate standard stability indicators: H:C and O:C molar ratios. Lignocellulosic feedstocks were pyrolyzed at highest treatment temperatures (HTT) ranging from 150–700 °C, and all samples achieved H:C &lt; 0.7 and O:C &lt; 0.4 at HTT of 400 °C and above. Several statistical and machine learning models were developed using FTIR spectra. The random forest (RF) models, which incorporated full data preprocessing, yielded the highest accuracy (<i>R</i><sup>2</sup> = 0.96 for both ratios) when tested on an unseen feedstock. Variable importance analysis identified spectral regions linked to aromaticity and inversely correlated to C–O stretches in cellulose and lignin as key predictors. The findings of this study verify that FTIR data can serve as a rapid and accurate tool for estimating biochar stability.</p><p >This research utilizes Fourier-transform infrared spectroscopy (FTIR) and machine learning to predict common stability indicators of biochar.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 5","pages":"842–852 842–852"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssusresmgt.5c00104","citationCount":"0","resultStr":"{\"title\":\"Biochar Stability Revealed by FTIR and Machine Learning\",\"authors\":\"Monica A. McCall*,&nbsp;Jonathan S. Watson,&nbsp;Jonathan S. W. Tan and Mark A. Sephton,&nbsp;\",\"doi\":\"10.1021/acssusresmgt.5c0010410.1021/acssusresmgt.5c00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biochar is a carbon-rich and environmentally recalcitrant material, with strong potential for climate change mitigation. There is a need for rapid and accessible estimations of biochar stability, the resistance to biotic and abiotic degradation in soil. This study builds on previous work by integrating Fourier-transform infrared spectroscopy (FTIR) data with predictive modeling to estimate standard stability indicators: H:C and O:C molar ratios. Lignocellulosic feedstocks were pyrolyzed at highest treatment temperatures (HTT) ranging from 150–700 °C, and all samples achieved H:C &lt; 0.7 and O:C &lt; 0.4 at HTT of 400 °C and above. Several statistical and machine learning models were developed using FTIR spectra. The random forest (RF) models, which incorporated full data preprocessing, yielded the highest accuracy (<i>R</i><sup>2</sup> = 0.96 for both ratios) when tested on an unseen feedstock. Variable importance analysis identified spectral regions linked to aromaticity and inversely correlated to C–O stretches in cellulose and lignin as key predictors. The findings of this study verify that FTIR data can serve as a rapid and accurate tool for estimating biochar stability.</p><p >This research utilizes Fourier-transform infrared spectroscopy (FTIR) and machine learning to predict common stability indicators of biochar.</p>\",\"PeriodicalId\":100015,\"journal\":{\"name\":\"ACS Sustainable Resource Management\",\"volume\":\"2 5\",\"pages\":\"842–852 842–852\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acssusresmgt.5c00104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Resource Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssusresmgt.5c00104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.5c00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物炭是一种富含碳且对环境具有抗逆性的材料,具有减缓气候变化的巨大潜力。有必要对生物炭的稳定性、对土壤中生物和非生物降解的抗性进行快速和容易获得的评估。本研究建立在先前工作的基础上,将傅里叶变换红外光谱(FTIR)数据与预测建模相结合,以估计标准稳定性指标:H:C和O:C摩尔比。木质纤维素原料在150-700°C的最高处理温度(HTT)下进行热解,所有样品均达到H:C <;0.7和0:C <;在400°C及以上的高温下为0.4。利用FTIR光谱建立了几个统计和机器学习模型。随机森林(RF)模型包含了完整的数据预处理,当在不可见的原料上进行测试时,产生了最高的准确性(R2 = 0.96)。变量重要性分析确定了与芳香性相关的光谱区域和与纤维素和木质素中的C-O延伸负相关的光谱区域作为关键预测因子。本研究的结果验证了FTIR数据可以作为评估生物炭稳定性的快速准确的工具。本研究利用傅里叶变换红外光谱(FTIR)和机器学习来预测生物炭的常见稳定性指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochar Stability Revealed by FTIR and Machine Learning

Biochar is a carbon-rich and environmentally recalcitrant material, with strong potential for climate change mitigation. There is a need for rapid and accessible estimations of biochar stability, the resistance to biotic and abiotic degradation in soil. This study builds on previous work by integrating Fourier-transform infrared spectroscopy (FTIR) data with predictive modeling to estimate standard stability indicators: H:C and O:C molar ratios. Lignocellulosic feedstocks were pyrolyzed at highest treatment temperatures (HTT) ranging from 150–700 °C, and all samples achieved H:C < 0.7 and O:C < 0.4 at HTT of 400 °C and above. Several statistical and machine learning models were developed using FTIR spectra. The random forest (RF) models, which incorporated full data preprocessing, yielded the highest accuracy (R2 = 0.96 for both ratios) when tested on an unseen feedstock. Variable importance analysis identified spectral regions linked to aromaticity and inversely correlated to C–O stretches in cellulose and lignin as key predictors. The findings of this study verify that FTIR data can serve as a rapid and accurate tool for estimating biochar stability.

This research utilizes Fourier-transform infrared spectroscopy (FTIR) and machine learning to predict common stability indicators of biochar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信