利用机器学习电位探索热电体中立体化学活性孤对和嘎嘎响效应

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Harpriya Minhas, Rahul Kumar Sharma and Biswarup Pathak*, 
{"title":"利用机器学习电位探索热电体中立体化学活性孤对和嘎嘎响效应","authors":"Harpriya Minhas,&nbsp;Rahul Kumar Sharma and Biswarup Pathak*,&nbsp;","doi":"10.1021/acs.jpclett.5c0095210.1021/acs.jpclett.5c00952","DOIUrl":null,"url":null,"abstract":"<p >Stereochemically active lone pairs (SCALPs) are recognized for their ability to break local symmetry, induce lattice anharmonicity, and influence thermoelectric properties. Similarly, rattling atoms influence the thermal conductivity by introducing additional vibrational modes that disrupt phonon transport. SCALPs containing pnictogen chalcogenides alongside rattling atoms pose challenges for calculating thermal transport properties using <i>ab initio</i> methods because of their noncentrosymmetric structures. Here, we employ machine learning interatomic potentials (MLIPs) to explore the combined effects of SCALPs and rattling atoms in AAsSe<sub>2</sub> (A = Li or Na). The strong anharmonicity in the γ-NaAsSe<sub>2</sub> system arises from rattling modes and active As 4s<sup>2</sup> SCALP-induced electrostatic interactions, leading to reduced lone-pair angles. The unique chemical bonding behind the high anharmonicity is attributed to antibonding states near the valence band and the flat vibrational behavior of rattler atoms, induced phonon softening, structural distortions, and enhanced phonon scattering. This work highlights the combined effects of SCALPs and rattling atoms, leveraging MLIPs to accelerate thermoelectric material design.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 20","pages":"5051–5061 5051–5061"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Combined Stereochemically Active Lone-Pair and Rattling Effects in Thermoelectrics with Machine Learning Potentials\",\"authors\":\"Harpriya Minhas,&nbsp;Rahul Kumar Sharma and Biswarup Pathak*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c0095210.1021/acs.jpclett.5c00952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stereochemically active lone pairs (SCALPs) are recognized for their ability to break local symmetry, induce lattice anharmonicity, and influence thermoelectric properties. Similarly, rattling atoms influence the thermal conductivity by introducing additional vibrational modes that disrupt phonon transport. SCALPs containing pnictogen chalcogenides alongside rattling atoms pose challenges for calculating thermal transport properties using <i>ab initio</i> methods because of their noncentrosymmetric structures. Here, we employ machine learning interatomic potentials (MLIPs) to explore the combined effects of SCALPs and rattling atoms in AAsSe<sub>2</sub> (A = Li or Na). The strong anharmonicity in the γ-NaAsSe<sub>2</sub> system arises from rattling modes and active As 4s<sup>2</sup> SCALP-induced electrostatic interactions, leading to reduced lone-pair angles. The unique chemical bonding behind the high anharmonicity is attributed to antibonding states near the valence band and the flat vibrational behavior of rattler atoms, induced phonon softening, structural distortions, and enhanced phonon scattering. This work highlights the combined effects of SCALPs and rattling atoms, leveraging MLIPs to accelerate thermoelectric material design.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 20\",\"pages\":\"5051–5061 5051–5061\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00952\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00952","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

立体化学活性孤对(SCALPs)因其破坏局部对称性、诱导晶格非调和性和影响热电性质的能力而得到认可。同样,嘎嘎作响的原子通过引入额外的振动模式来破坏声子传输,从而影响热导率。由于其非中心对称的结构,含有硫族烟原和嘎嘎原子的SCALPs对用从头算方法计算热输运性质提出了挑战。在这里,我们使用机器学习原子间电位(MLIPs)来探索AAsSe2 (A = Li或Na)中SCALPs和嘎嘎原子的联合效应。γ-NaAsSe2体系中的强非调和性来自于咔嗒模式和活跃的as4s2 scalp诱导的静电相互作用,导致孤对角减小。高非调和性背后的独特化学键归因于价带附近的反键状态和响尾蛇原子的平坦振动行为,诱导声子软化,结构扭曲和增强声子散射。这项工作强调了SCALPs和嘎嘎原子的联合效应,利用MLIPs加速热电材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Combined Stereochemically Active Lone-Pair and Rattling Effects in Thermoelectrics with Machine Learning Potentials

Exploring Combined Stereochemically Active Lone-Pair and Rattling Effects in Thermoelectrics with Machine Learning Potentials

Stereochemically active lone pairs (SCALPs) are recognized for their ability to break local symmetry, induce lattice anharmonicity, and influence thermoelectric properties. Similarly, rattling atoms influence the thermal conductivity by introducing additional vibrational modes that disrupt phonon transport. SCALPs containing pnictogen chalcogenides alongside rattling atoms pose challenges for calculating thermal transport properties using ab initio methods because of their noncentrosymmetric structures. Here, we employ machine learning interatomic potentials (MLIPs) to explore the combined effects of SCALPs and rattling atoms in AAsSe2 (A = Li or Na). The strong anharmonicity in the γ-NaAsSe2 system arises from rattling modes and active As 4s2 SCALP-induced electrostatic interactions, leading to reduced lone-pair angles. The unique chemical bonding behind the high anharmonicity is attributed to antibonding states near the valence band and the flat vibrational behavior of rattler atoms, induced phonon softening, structural distortions, and enhanced phonon scattering. This work highlights the combined effects of SCALPs and rattling atoms, leveraging MLIPs to accelerate thermoelectric material design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信