Jacob K. Moutouama, Aldo Compagnoni, Tom E. X. Miller
{"title":"气候变化下雌雄异株植物范围变化预测","authors":"Jacob K. Moutouama, Aldo Compagnoni, Tom E. X. Miller","doi":"10.1073/pnas.2422162122","DOIUrl":null,"url":null,"abstract":"Global climate change has triggered an urgent need for predicting the reorganization of Earth’s biodiversity. For dioecious species (those with separate sexes), it is unclear how commonly unique climate sensitivities of females and males could influence projections for species-level responses to climate change. We developed demographic models of range limitation, parameterized from geographically distributed common garden experiments, with females and males of a dioecious grass species ( <jats:italic toggle=\"yes\">Poa arachnifera</jats:italic> ) throughout and beyond its range in the south-central U.S. We contrasted predictions of a standard female-dominant model with those of a two-sex model that accounts for feedbacks between sex ratio and vital rates. Both model versions predict that future climate change will induce a poleward shift of niche suitability beyond current northern limits. However, the magnitude of the poleward shift was underestimated by the female-dominant model because females have broader temperature tolerance than males but become mate-limited under female-biased sex ratios, which are forecasted to become more common under future climate. Our results illustrate how explicitly accounting for both sexes can enhance population viability forecasts and conservation planning for dioecious species in response to climate change.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"78 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting range shifts of dioecious plants under climate change\",\"authors\":\"Jacob K. Moutouama, Aldo Compagnoni, Tom E. X. Miller\",\"doi\":\"10.1073/pnas.2422162122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global climate change has triggered an urgent need for predicting the reorganization of Earth’s biodiversity. For dioecious species (those with separate sexes), it is unclear how commonly unique climate sensitivities of females and males could influence projections for species-level responses to climate change. We developed demographic models of range limitation, parameterized from geographically distributed common garden experiments, with females and males of a dioecious grass species ( <jats:italic toggle=\\\"yes\\\">Poa arachnifera</jats:italic> ) throughout and beyond its range in the south-central U.S. We contrasted predictions of a standard female-dominant model with those of a two-sex model that accounts for feedbacks between sex ratio and vital rates. Both model versions predict that future climate change will induce a poleward shift of niche suitability beyond current northern limits. However, the magnitude of the poleward shift was underestimated by the female-dominant model because females have broader temperature tolerance than males but become mate-limited under female-biased sex ratios, which are forecasted to become more common under future climate. Our results illustrate how explicitly accounting for both sexes can enhance population viability forecasts and conservation planning for dioecious species in response to climate change.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2422162122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2422162122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Forecasting range shifts of dioecious plants under climate change
Global climate change has triggered an urgent need for predicting the reorganization of Earth’s biodiversity. For dioecious species (those with separate sexes), it is unclear how commonly unique climate sensitivities of females and males could influence projections for species-level responses to climate change. We developed demographic models of range limitation, parameterized from geographically distributed common garden experiments, with females and males of a dioecious grass species ( Poa arachnifera ) throughout and beyond its range in the south-central U.S. We contrasted predictions of a standard female-dominant model with those of a two-sex model that accounts for feedbacks between sex ratio and vital rates. Both model versions predict that future climate change will induce a poleward shift of niche suitability beyond current northern limits. However, the magnitude of the poleward shift was underestimated by the female-dominant model because females have broader temperature tolerance than males but become mate-limited under female-biased sex ratios, which are forecasted to become more common under future climate. Our results illustrate how explicitly accounting for both sexes can enhance population viability forecasts and conservation planning for dioecious species in response to climate change.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.