Claudia A. Mimoso, Hanneke Vlaming, Nathalie P. de Wagenaar, Allison P. Siegenfeld, Karen Adelman
{"title":"限制子减缓RNAPII的延伸,促进在非编码RNA位点的终止","authors":"Claudia A. Mimoso, Hanneke Vlaming, Nathalie P. de Wagenaar, Allison P. Siegenfeld, Karen Adelman","doi":"10.1101/gad.352654.125","DOIUrl":null,"url":null,"abstract":"The eukaryotic genome is broadly transcribed by RNA polymerase II (RNAPII) to produce protein-coding messenger RNAs (mRNAs) and a repertoire of noncoding RNAs (ncRNAs). Although RNAPII is very processive during mRNA transcription, it terminates rapidly during synthesis of many ncRNAs, particularly those that arise opportunistically from accessible chromatin at gene promoters or enhancers. The divergent fates of mRNA versus ncRNA species raise many questions about how RNAPII and associated machineries discriminate functional from spurious transcription. Restrictor, comprised of the RNA binding protein ZC3H4 and RNAPII-interacting protein WDR82, has been implicated in restraining the expression of ncRNAs. However, the determinants of Restrictor specificity and the mechanism of transcription suppression remain unclear. Here, we investigate Restrictor using unbiased sequence screens and rapid protein degradation followed by nascent RNA sequencing. We found that Restrictor promiscuously suppresses early elongation by RNAPII, but this activity is blocked at most mRNAs by the presence of a 5′ splice site. Consequently, Restrictor is a critical determinant of transcription directionality at divergent promoters and prevents transcriptional interference. Mechanistically, we show that rather than terminating RNAPII directly, Restrictor acts by reducing the rate of transcription elongation, rendering RNAPII susceptible to early termination by other machineries.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"55 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restrictor slows RNAPII elongation to promote termination at noncoding RNA loci\",\"authors\":\"Claudia A. Mimoso, Hanneke Vlaming, Nathalie P. de Wagenaar, Allison P. Siegenfeld, Karen Adelman\",\"doi\":\"10.1101/gad.352654.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eukaryotic genome is broadly transcribed by RNA polymerase II (RNAPII) to produce protein-coding messenger RNAs (mRNAs) and a repertoire of noncoding RNAs (ncRNAs). Although RNAPII is very processive during mRNA transcription, it terminates rapidly during synthesis of many ncRNAs, particularly those that arise opportunistically from accessible chromatin at gene promoters or enhancers. The divergent fates of mRNA versus ncRNA species raise many questions about how RNAPII and associated machineries discriminate functional from spurious transcription. Restrictor, comprised of the RNA binding protein ZC3H4 and RNAPII-interacting protein WDR82, has been implicated in restraining the expression of ncRNAs. However, the determinants of Restrictor specificity and the mechanism of transcription suppression remain unclear. Here, we investigate Restrictor using unbiased sequence screens and rapid protein degradation followed by nascent RNA sequencing. We found that Restrictor promiscuously suppresses early elongation by RNAPII, but this activity is blocked at most mRNAs by the presence of a 5′ splice site. Consequently, Restrictor is a critical determinant of transcription directionality at divergent promoters and prevents transcriptional interference. Mechanistically, we show that rather than terminating RNAPII directly, Restrictor acts by reducing the rate of transcription elongation, rendering RNAPII susceptible to early termination by other machineries.\",\"PeriodicalId\":12591,\"journal\":{\"name\":\"Genes & development\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gad.352654.125\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352654.125","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Restrictor slows RNAPII elongation to promote termination at noncoding RNA loci
The eukaryotic genome is broadly transcribed by RNA polymerase II (RNAPII) to produce protein-coding messenger RNAs (mRNAs) and a repertoire of noncoding RNAs (ncRNAs). Although RNAPII is very processive during mRNA transcription, it terminates rapidly during synthesis of many ncRNAs, particularly those that arise opportunistically from accessible chromatin at gene promoters or enhancers. The divergent fates of mRNA versus ncRNA species raise many questions about how RNAPII and associated machineries discriminate functional from spurious transcription. Restrictor, comprised of the RNA binding protein ZC3H4 and RNAPII-interacting protein WDR82, has been implicated in restraining the expression of ncRNAs. However, the determinants of Restrictor specificity and the mechanism of transcription suppression remain unclear. Here, we investigate Restrictor using unbiased sequence screens and rapid protein degradation followed by nascent RNA sequencing. We found that Restrictor promiscuously suppresses early elongation by RNAPII, but this activity is blocked at most mRNAs by the presence of a 5′ splice site. Consequently, Restrictor is a critical determinant of transcription directionality at divergent promoters and prevents transcriptional interference. Mechanistically, we show that rather than terminating RNAPII directly, Restrictor acts by reducing the rate of transcription elongation, rendering RNAPII susceptible to early termination by other machineries.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).