Muhammad Hafizuddin Mohd Sofi, Muhamed Yusuf Shahul Hamid, Aishah Abdul Jalil, Tuan Amran Tuan Abdullah, Mohamed Yusuf Mohamud, Mahadi Bahari, Nurul Sahida Hassan, Dai-Viet N. Vo
{"title":"用硅纤维包覆的硅铝磷酸盐沸石提高甲醇与烯烃反应的稳定性和抗焦性","authors":"Muhammad Hafizuddin Mohd Sofi, Muhamed Yusuf Shahul Hamid, Aishah Abdul Jalil, Tuan Amran Tuan Abdullah, Mohamed Yusuf Mohamud, Mahadi Bahari, Nurul Sahida Hassan, Dai-Viet N. Vo","doi":"10.1007/s10311-025-01845-4","DOIUrl":null,"url":null,"abstract":"<p>The conversion of biomethanol into olefins is a sustainable alternative to fossil fuels, yet this reaction is limited by the deactivation of the silicoaluminophosphate zeolite catalysts due to its microporosity, which promotes coke deposition. Here we synthesized a fibrous silica-wrapped silicoaluminophosphate catalyst by microemulsion and seed-assisted hydrothermal method. This catalyst was characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, nitrogen physisorption, field emission scanning electron microscopy, transmission electron microscopy, and ammonia temperature-programmed desorption. The catalytic performance was evaluated from 300 to 500 °C, followed by a stability test conducted at 500 °C for 30 h. Coke deposition on spent catalysts was analyzed using thermal gravimetric analysis, oxygen temperature-programmed oxidation, ultraviolet–visible, and Raman spectroscopy. Results show a 54% extension of the catalyst lifetime, and a 31.4%w reduction in coke formation. These findings are explained by the fibrous silica wrapping that creates a surplus mesoporosity beyond conventional hierarchical structure, enabling improved accessibility, reduced diffusion resistance, and suppressed coke formation.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"1 1","pages":""},"PeriodicalIF":20.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced stability and coke resistance in methanol to olefins reaction using fibrous silica-wrapped silicoaluminophosphate zeolite\",\"authors\":\"Muhammad Hafizuddin Mohd Sofi, Muhamed Yusuf Shahul Hamid, Aishah Abdul Jalil, Tuan Amran Tuan Abdullah, Mohamed Yusuf Mohamud, Mahadi Bahari, Nurul Sahida Hassan, Dai-Viet N. Vo\",\"doi\":\"10.1007/s10311-025-01845-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The conversion of biomethanol into olefins is a sustainable alternative to fossil fuels, yet this reaction is limited by the deactivation of the silicoaluminophosphate zeolite catalysts due to its microporosity, which promotes coke deposition. Here we synthesized a fibrous silica-wrapped silicoaluminophosphate catalyst by microemulsion and seed-assisted hydrothermal method. This catalyst was characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, nitrogen physisorption, field emission scanning electron microscopy, transmission electron microscopy, and ammonia temperature-programmed desorption. The catalytic performance was evaluated from 300 to 500 °C, followed by a stability test conducted at 500 °C for 30 h. Coke deposition on spent catalysts was analyzed using thermal gravimetric analysis, oxygen temperature-programmed oxidation, ultraviolet–visible, and Raman spectroscopy. Results show a 54% extension of the catalyst lifetime, and a 31.4%w reduction in coke formation. These findings are explained by the fibrous silica wrapping that creates a surplus mesoporosity beyond conventional hierarchical structure, enabling improved accessibility, reduced diffusion resistance, and suppressed coke formation.</p>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":20.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10311-025-01845-4\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01845-4","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced stability and coke resistance in methanol to olefins reaction using fibrous silica-wrapped silicoaluminophosphate zeolite
The conversion of biomethanol into olefins is a sustainable alternative to fossil fuels, yet this reaction is limited by the deactivation of the silicoaluminophosphate zeolite catalysts due to its microporosity, which promotes coke deposition. Here we synthesized a fibrous silica-wrapped silicoaluminophosphate catalyst by microemulsion and seed-assisted hydrothermal method. This catalyst was characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, nitrogen physisorption, field emission scanning electron microscopy, transmission electron microscopy, and ammonia temperature-programmed desorption. The catalytic performance was evaluated from 300 to 500 °C, followed by a stability test conducted at 500 °C for 30 h. Coke deposition on spent catalysts was analyzed using thermal gravimetric analysis, oxygen temperature-programmed oxidation, ultraviolet–visible, and Raman spectroscopy. Results show a 54% extension of the catalyst lifetime, and a 31.4%w reduction in coke formation. These findings are explained by the fibrous silica wrapping that creates a surplus mesoporosity beyond conventional hierarchical structure, enabling improved accessibility, reduced diffusion resistance, and suppressed coke formation.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.