Pulkit Agarwal, Richard Brower, Timothy Raben, Chung-I Tan
{"title":"洛伦兹OPE反演公式:几何透视","authors":"Pulkit Agarwal, Richard Brower, Timothy Raben, Chung-I Tan","doi":"10.1103/physrevd.111.106012","DOIUrl":null,"url":null,"abstract":"We give a new perspective on the Lorentzian operator product expansion inversion formula [S. Caron-Huot, Analyticity in spin in conformal theories, .; D. Simmons-Duffin, D. Stanford, and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, .], building on [P. Agarwal , companion paper, Embedding space approach to Lorentzian CFT amplitudes and causal spherical functions, .]. We introduce an “auxiliary” fourpoint function that can be related to the traditionally defined ones via a Radon transform. The Mellin amplitudes associated with this auxiliary function can be shown to be equivalent to the conventional partial wave amplitudes. This has the intuitive geometrical meaning of a generalization of the projection-slice theorem. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"14 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentzian OPE inversion formula: A geometric perspective\",\"authors\":\"Pulkit Agarwal, Richard Brower, Timothy Raben, Chung-I Tan\",\"doi\":\"10.1103/physrevd.111.106012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a new perspective on the Lorentzian operator product expansion inversion formula [S. Caron-Huot, Analyticity in spin in conformal theories, .; D. Simmons-Duffin, D. Stanford, and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, .], building on [P. Agarwal , companion paper, Embedding space approach to Lorentzian CFT amplitudes and causal spherical functions, .]. We introduce an “auxiliary” fourpoint function that can be related to the traditionally defined ones via a Radon transform. The Mellin amplitudes associated with this auxiliary function can be shown to be equivalent to the conventional partial wave amplitudes. This has the intuitive geometrical meaning of a generalization of the projection-slice theorem. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.106012\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.106012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
给出了洛伦兹算子乘积展开反演公式的一个新视角[S]。王志强,等。共形理论中自旋的解析性;D. simons - duffin, D. Stanford和E. Witten, Lorentzian OPE反演公式的时空推导,[P.]Agarwal,同伴论文,Lorentzian CFT振幅和因果球函数的嵌入空间方法,[j]。我们引入一个“辅助”四点函数,它可以通过Radon变换与传统定义的四点函数相关联。与此辅助函数相关的梅林振幅可以证明与传统的部分波振幅等效。这是投影切片定理的一个推广,具有直观的几何意义。2025年由美国物理学会出版
Lorentzian OPE inversion formula: A geometric perspective
We give a new perspective on the Lorentzian operator product expansion inversion formula [S. Caron-Huot, Analyticity in spin in conformal theories, .; D. Simmons-Duffin, D. Stanford, and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, .], building on [P. Agarwal , companion paper, Embedding space approach to Lorentzian CFT amplitudes and causal spherical functions, .]. We introduce an “auxiliary” fourpoint function that can be related to the traditionally defined ones via a Radon transform. The Mellin amplitudes associated with this auxiliary function can be shown to be equivalent to the conventional partial wave amplitudes. This has the intuitive geometrical meaning of a generalization of the projection-slice theorem. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.