垂直气候速度为物种转移增加了一个关键维度

IF 29.6 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Laura K. Gruenburg, Janet Nye, Kamazima Lwiza, Lesley Thorne
{"title":"垂直气候速度为物种转移增加了一个关键维度","authors":"Laura K. Gruenburg, Janet Nye, Kamazima Lwiza, Lesley Thorne","doi":"10.1038/s41558-025-02300-6","DOIUrl":null,"url":null,"abstract":"<p>Climate responses of marine organisms differ from those on land as marine species have the flexibility to move vertically. While horizontal climate velocity has been used to predict poleward range shifts, many species are not moving as expected. Incorporating shifts in depth, which have received less attention, may better explain climate responses of marine organisms. Here we assess vertical and horizontal climate velocities across 63 global large marine ecosystems and find that 77% of vertical climate velocities are negative, reflecting isotherm deepening. Vertical climate velocity is 10,000 times smaller than horizontal climate velocity, allowing organisms to maintain constant temperatures by shifting metres in depth rather than kilometres horizontally. Within three key large marine ecosystems, we find more species shifts are explained by vertical than by horizontal climate velocity. Together, our findings have implications for understanding species adaptation to change and for future accessibility of marine resources.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"56 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical climate velocity adds a critical dimension to species shifts\",\"authors\":\"Laura K. Gruenburg, Janet Nye, Kamazima Lwiza, Lesley Thorne\",\"doi\":\"10.1038/s41558-025-02300-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate responses of marine organisms differ from those on land as marine species have the flexibility to move vertically. While horizontal climate velocity has been used to predict poleward range shifts, many species are not moving as expected. Incorporating shifts in depth, which have received less attention, may better explain climate responses of marine organisms. Here we assess vertical and horizontal climate velocities across 63 global large marine ecosystems and find that 77% of vertical climate velocities are negative, reflecting isotherm deepening. Vertical climate velocity is 10,000 times smaller than horizontal climate velocity, allowing organisms to maintain constant temperatures by shifting metres in depth rather than kilometres horizontally. Within three key large marine ecosystems, we find more species shifts are explained by vertical than by horizontal climate velocity. Together, our findings have implications for understanding species adaptation to change and for future accessibility of marine resources.</p>\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41558-025-02300-6\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02300-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海洋生物对气候的反应不同于陆地生物,因为海洋物种具有垂直移动的灵活性。虽然水平气候速度被用来预测两极范围的移动,但许多物种并没有像预期的那样移动。将受到较少关注的深度变化结合起来,或许能更好地解释海洋生物对气候的反应。在这里,我们评估了63个全球大型海洋生态系统的垂直和水平气候速度,发现77%的垂直气候速度为负,反映了等温线的加深。垂直气候速度比水平气候速度小1万倍,这使得生物能够通过深度移动数米而不是水平移动数公里来保持恒温。在三个关键的大型海洋生态系统中,我们发现更多的物种变化是由垂直而不是水平气候速度来解释的。总之,我们的发现对了解物种对变化的适应以及未来海洋资源的可及性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vertical climate velocity adds a critical dimension to species shifts

Vertical climate velocity adds a critical dimension to species shifts

Climate responses of marine organisms differ from those on land as marine species have the flexibility to move vertically. While horizontal climate velocity has been used to predict poleward range shifts, many species are not moving as expected. Incorporating shifts in depth, which have received less attention, may better explain climate responses of marine organisms. Here we assess vertical and horizontal climate velocities across 63 global large marine ecosystems and find that 77% of vertical climate velocities are negative, reflecting isotherm deepening. Vertical climate velocity is 10,000 times smaller than horizontal climate velocity, allowing organisms to maintain constant temperatures by shifting metres in depth rather than kilometres horizontally. Within three key large marine ecosystems, we find more species shifts are explained by vertical than by horizontal climate velocity. Together, our findings have implications for understanding species adaptation to change and for future accessibility of marine resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信