复杂结的BPS谱

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Vivek Kumar Singh, Nafaa Chbili
{"title":"复杂结的BPS谱","authors":"Vivek Kumar Singh, Nafaa Chbili","doi":"10.1103/physrevd.111.106011","DOIUrl":null,"url":null,"abstract":"Marino’s Conjecture remains underexplored within the framework of S</a:mi>O</a:mi>(</a:mo>N</a:mi>)</a:mo></a:math> string dualities. In this article, we investigated the reformulated invariants of one-parameter families of knots <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mrow><e:mo stretchy=\"false\">[</e:mo><e:mi mathvariant=\"script\">K</e:mi><e:mo stretchy=\"false\">]</e:mo></e:mrow><e:mi>p</e:mi></e:msub></e:math> derived from tangle surgery on Manolescu’s quasialternating knot diagrams [C. Manolescu, ]. Within topological string dualities, we have verified Marino’s integrality conjecture for these families of knots up to the Young diagram representation <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi mathvariant=\"bold\">R</j:mi></j:math>, with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mo stretchy=\"false\">|</m:mo><m:mi mathvariant=\"bold\">R</m:mi><m:mo stretchy=\"false\">|</m:mo></m:mrow><m:mo>≤</m:mo><m:mn>2</m:mn></m:math>. Furthermore, through our analysis, we have conjectured a closed structure for the extremal refined Bogomol’nyi–Prasad–Sommerfeld (BPS) integers for the torus knots <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:msub><r:mrow><r:mo stretchy=\"false\">[</r:mo><r:msub><r:mn mathvariant=\"bold\">3</r:mn><r:mn mathvariant=\"bold\">1</r:mn></r:msub><r:mo stretchy=\"false\">]</r:mo></r:mrow><r:mrow><r:mn>2</r:mn><r:mi>p</r:mi><r:mo>+</r:mo><r:mn>1</r:mn></r:mrow></r:msub></r:math> and <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:msub><x:mrow><x:mo stretchy=\"false\">[</x:mo><x:msub><x:mn mathvariant=\"bold\">8</x:mn><x:mn mathvariant=\"bold\">20</x:mn></x:msub><x:mo stretchy=\"false\">]</x:mo></x:mrow><x:mrow><x:mn>2</x:mn><x:mi>p</x:mi><x:mo>+</x:mo><x:mn>1</x:mn></x:mrow></x:msub></x:math>, <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:mi>p</db:mi><db:mo>∈</db:mo><db:msub><db:mi mathvariant=\"double-struck\">Z</db:mi><db:mrow><db:mo>≥</db:mo><db:mn>0</db:mn></db:mrow></db:msub></db:math>. As the parameter <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>p</gb:mi></gb:math> of the knot diagram increases, the total crossing number of a knot exceeds 16, which we describe as a complex knot. Interestingly, we discovered the maximum number of gaps in the BPS spectra associated with complex knot families. Moreover, our observations indicated that as <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi>p</ib:mi></ib:math> increases, the size of these gaps also expands. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BPS spectra of complex knots\",\"authors\":\"Vivek Kumar Singh, Nafaa Chbili\",\"doi\":\"10.1103/physrevd.111.106011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marino’s Conjecture remains underexplored within the framework of S</a:mi>O</a:mi>(</a:mo>N</a:mi>)</a:mo></a:math> string dualities. In this article, we investigated the reformulated invariants of one-parameter families of knots <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mrow><e:mo stretchy=\\\"false\\\">[</e:mo><e:mi mathvariant=\\\"script\\\">K</e:mi><e:mo stretchy=\\\"false\\\">]</e:mo></e:mrow><e:mi>p</e:mi></e:msub></e:math> derived from tangle surgery on Manolescu’s quasialternating knot diagrams [C. Manolescu, ]. Within topological string dualities, we have verified Marino’s integrality conjecture for these families of knots up to the Young diagram representation <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:mi mathvariant=\\\"bold\\\">R</j:mi></j:math>, with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mrow><m:mo stretchy=\\\"false\\\">|</m:mo><m:mi mathvariant=\\\"bold\\\">R</m:mi><m:mo stretchy=\\\"false\\\">|</m:mo></m:mrow><m:mo>≤</m:mo><m:mn>2</m:mn></m:math>. Furthermore, through our analysis, we have conjectured a closed structure for the extremal refined Bogomol’nyi–Prasad–Sommerfeld (BPS) integers for the torus knots <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:msub><r:mrow><r:mo stretchy=\\\"false\\\">[</r:mo><r:msub><r:mn mathvariant=\\\"bold\\\">3</r:mn><r:mn mathvariant=\\\"bold\\\">1</r:mn></r:msub><r:mo stretchy=\\\"false\\\">]</r:mo></r:mrow><r:mrow><r:mn>2</r:mn><r:mi>p</r:mi><r:mo>+</r:mo><r:mn>1</r:mn></r:mrow></r:msub></r:math> and <x:math xmlns:x=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><x:msub><x:mrow><x:mo stretchy=\\\"false\\\">[</x:mo><x:msub><x:mn mathvariant=\\\"bold\\\">8</x:mn><x:mn mathvariant=\\\"bold\\\">20</x:mn></x:msub><x:mo stretchy=\\\"false\\\">]</x:mo></x:mrow><x:mrow><x:mn>2</x:mn><x:mi>p</x:mi><x:mo>+</x:mo><x:mn>1</x:mn></x:mrow></x:msub></x:math>, <db:math xmlns:db=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><db:mi>p</db:mi><db:mo>∈</db:mo><db:msub><db:mi mathvariant=\\\"double-struck\\\">Z</db:mi><db:mrow><db:mo>≥</db:mo><db:mn>0</db:mn></db:mrow></db:msub></db:math>. As the parameter <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mi>p</gb:mi></gb:math> of the knot diagram increases, the total crossing number of a knot exceeds 16, which we describe as a complex knot. Interestingly, we discovered the maximum number of gaps in the BPS spectra associated with complex knot families. Moreover, our observations indicated that as <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mi>p</ib:mi></ib:math> increases, the size of these gaps also expands. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.106011\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.106011","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

Marino猜想在SO(N)弦对偶性的框架内仍未得到充分的研究。在本文中,我们研究了Manolescu 's拟交替结图[C]上由缠结手术导出的单参数结族[K]p的重新表述不变量。Manolescu]。在拓扑弦对偶性中,我们验证了这些结族的Marino的完整性猜想,直到Young图表示R,其中|R|≤2。进一步,通过分析,我们推测了环面结点[31]2p+1和[820]2p+1, p∈Z≥0的极值精化Bogomol 'nyi-Prasad-Sommerfeld (BPS)整数的封闭结构。随着结图参数p的增大,一个结的总交叉数超过16个,我们称之为复结。有趣的是,我们发现了与复杂结家族相关的BPS光谱中最大数量的间隙。此外,我们的观察表明,随着p的增加,这些差距的大小也会扩大。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BPS spectra of complex knots
Marino’s Conjecture remains underexplored within the framework of SO(N) string dualities. In this article, we investigated the reformulated invariants of one-parameter families of knots [K]p derived from tangle surgery on Manolescu’s quasialternating knot diagrams [C. Manolescu, ]. Within topological string dualities, we have verified Marino’s integrality conjecture for these families of knots up to the Young diagram representation R, with |R|2. Furthermore, through our analysis, we have conjectured a closed structure for the extremal refined Bogomol’nyi–Prasad–Sommerfeld (BPS) integers for the torus knots [31]2p+1 and [820]2p+1, pZ0. As the parameter p of the knot diagram increases, the total crossing number of a knot exceeds 16, which we describe as a complex knot. Interestingly, we discovered the maximum number of gaps in the BPS spectra associated with complex knot families. Moreover, our observations indicated that as p increases, the size of these gaps also expands. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信