通过Mellin变换的欧几里得晶格相关器的谱密度

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Mattia Bruno, Leonardo Giusti, Matteo Saccardi
{"title":"通过Mellin变换的欧几里得晶格相关器的谱密度","authors":"Mattia Bruno, Leonardo Giusti, Matteo Saccardi","doi":"10.1103/physrevd.111.094515","DOIUrl":null,"url":null,"abstract":"Spectral densities connect correlation functions computed in quantum field theory to observables measured in experiments. For strongly interacting theories, their nonperturbative determinations from lattice simulations are therefore of primary importance. They entail the inverse Laplace transform of correlation functions calculated in Euclidean time. By making use of the Mellin transform, we derive explicit analytic formulas to define spectral densities from the time dependence of correlation functions, both in the continuum and on the lattice. The generalization to smeared spectral densities turns out to be straightforward. The formulas obtained here within the context of lattice field theory can easily be applied or extended to other areas of research. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"76 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral densities from Euclidean lattice correlators via the Mellin transform\",\"authors\":\"Mattia Bruno, Leonardo Giusti, Matteo Saccardi\",\"doi\":\"10.1103/physrevd.111.094515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral densities connect correlation functions computed in quantum field theory to observables measured in experiments. For strongly interacting theories, their nonperturbative determinations from lattice simulations are therefore of primary importance. They entail the inverse Laplace transform of correlation functions calculated in Euclidean time. By making use of the Mellin transform, we derive explicit analytic formulas to define spectral densities from the time dependence of correlation functions, both in the continuum and on the lattice. The generalization to smeared spectral densities turns out to be straightforward. The formulas obtained here within the context of lattice field theory can easily be applied or extended to other areas of research. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.094515\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.094515","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

谱密度将量子场论中计算的相关函数与实验中测量的可观测值联系起来。因此,对于强相互作用理论来说,它们从晶格模拟中得到的非摄动决定是最重要的。它们需要用欧几里德时间计算相关函数的拉普拉斯逆变换。利用Mellin变换,我们推导出明确的解析公式,从连续统和晶格上的相关函数的时间依赖性中定义谱密度。对涂抹谱密度的推广结果是直接的。这里在晶格场理论的背景下得到的公式可以很容易地应用或扩展到其他研究领域。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral densities from Euclidean lattice correlators via the Mellin transform
Spectral densities connect correlation functions computed in quantum field theory to observables measured in experiments. For strongly interacting theories, their nonperturbative determinations from lattice simulations are therefore of primary importance. They entail the inverse Laplace transform of correlation functions calculated in Euclidean time. By making use of the Mellin transform, we derive explicit analytic formulas to define spectral densities from the time dependence of correlation functions, both in the continuum and on the lattice. The generalization to smeared spectral densities turns out to be straightforward. The formulas obtained here within the context of lattice field theory can easily be applied or extended to other areas of research. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信