{"title":"如何创造宇宙","authors":"Paolo M. Bassani, João Magueijo","doi":"10.1103/physrevd.111.103529","DOIUrl":null,"url":null,"abstract":"We establish the general conditions under which evolution in the laws of physics leads to violations of the conservation of the energy-momentum tensor for matter, resulting in matter creation or destruction. They make use of global time variables canonically dual to the constants of nature. Such times flow at a rate determined by what can be interpret as the chemical potential of the fundamental constants (in analogy with phenomenological clocks based on isentropic fluids). The general condition for violations of energy conservation is then that a matter parameter evolves as a function of a gravity clock or vice versa. This framework can be envisaged as the environment within which a natural selection scenario operates, powered by random mutations in the values of the constants of nature (or indeed any other variability in the laws in terms of the times defined above). The prize function is the creation of matter, followed by its preservation. This can be accomplished in an environment where diffeomorphism invariance is among the possible theories, with mutations modeled, for example, on the absorbing Markov chain. In such a setup, the diffeormorphism invariant state with fixed constants (or any nearby state) should be the absorbing state. John Wheeler’s “higgledy-piggledy” chaotic cosmic start therefore finds a realization in this model, where its own demise and the establishment of order and seemingly immutable laws is also a prediction of the model. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"18 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to make a universe\",\"authors\":\"Paolo M. Bassani, João Magueijo\",\"doi\":\"10.1103/physrevd.111.103529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the general conditions under which evolution in the laws of physics leads to violations of the conservation of the energy-momentum tensor for matter, resulting in matter creation or destruction. They make use of global time variables canonically dual to the constants of nature. Such times flow at a rate determined by what can be interpret as the chemical potential of the fundamental constants (in analogy with phenomenological clocks based on isentropic fluids). The general condition for violations of energy conservation is then that a matter parameter evolves as a function of a gravity clock or vice versa. This framework can be envisaged as the environment within which a natural selection scenario operates, powered by random mutations in the values of the constants of nature (or indeed any other variability in the laws in terms of the times defined above). The prize function is the creation of matter, followed by its preservation. This can be accomplished in an environment where diffeomorphism invariance is among the possible theories, with mutations modeled, for example, on the absorbing Markov chain. In such a setup, the diffeormorphism invariant state with fixed constants (or any nearby state) should be the absorbing state. John Wheeler’s “higgledy-piggledy” chaotic cosmic start therefore finds a realization in this model, where its own demise and the establishment of order and seemingly immutable laws is also a prediction of the model. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.103529\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.103529","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We establish the general conditions under which evolution in the laws of physics leads to violations of the conservation of the energy-momentum tensor for matter, resulting in matter creation or destruction. They make use of global time variables canonically dual to the constants of nature. Such times flow at a rate determined by what can be interpret as the chemical potential of the fundamental constants (in analogy with phenomenological clocks based on isentropic fluids). The general condition for violations of energy conservation is then that a matter parameter evolves as a function of a gravity clock or vice versa. This framework can be envisaged as the environment within which a natural selection scenario operates, powered by random mutations in the values of the constants of nature (or indeed any other variability in the laws in terms of the times defined above). The prize function is the creation of matter, followed by its preservation. This can be accomplished in an environment where diffeomorphism invariance is among the possible theories, with mutations modeled, for example, on the absorbing Markov chain. In such a setup, the diffeormorphism invariant state with fixed constants (or any nearby state) should be the absorbing state. John Wheeler’s “higgledy-piggledy” chaotic cosmic start therefore finds a realization in this model, where its own demise and the establishment of order and seemingly immutable laws is also a prediction of the model. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.