E3泛素连接酶环结构域11171 (RDUF1)和RDUF2控制拟南芥幼苗光形态发生。

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2025-05-21 DOI:10.1111/nph.70169
Annayasa Modak,Shivani Singh,Chirag Singhal,Gouranga Upadhyaya,Jinia Chakrabarty,Sreeramaiah N Gangappa
{"title":"E3泛素连接酶环结构域11171 (RDUF1)和RDUF2控制拟南芥幼苗光形态发生。","authors":"Annayasa Modak,Shivani Singh,Chirag Singhal,Gouranga Upadhyaya,Jinia Chakrabarty,Sreeramaiah N Gangappa","doi":"10.1111/nph.70169","DOIUrl":null,"url":null,"abstract":"The CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-ELONGATED HYPOCOTYL5 (HY5) circuit controls plant seedling photomorphogenesis. Regulation of HY5 protein levels is key for optimal photomorphogenic growth. This study identified the E3 ubiquitin ligases Really Interesting New Gene (RING) DOMAIN OF UNKNOWN FUNCTION 1117 1 (RDUF1) and RDUF2 as novel components of the COP1-HY5 pathway in Arabidopsis. The RDUF1 and RDUF2 knockout mutants exhibited longer hypocotyls with reduced photopigment accumulation than the wild-type. In comparison, the overexpression transgenic lines showed shorter hypocotyls with enhanced photomorphogenic responses in a wavelength-independent manner. HY5 directly binds to the RDUF1 and RDUF2 promoters through the G-box, activating their expression in response to light. Epistatic analysis and biochemical data showed that RDUF1 and RDUF2 genetically interact with and stabilize the HY5 protein, plausibly engaging the N77 part of HY5 and preventing COP1-mediated ubiquitination and degradation. In the dark, COP1 physically interacted with and ubiquitinated RDUF1 and RDUF2, subjecting them to degradation to keep HY5 levels low and promote skotomorphogenesis. However, light-mediated inhibition of COP1 activity mediated by photoreceptors increased RDUF1 and RDUF2 accumulation, enhancing HY5 protein stability and photomorphogenesis. This study establishes COP1-RDUF1/RDUF2-HY5 as a regulatory module of seedling photomorphogenesis under dynamic light cues.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"21 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The E3 ubiquitin ligases RING DOMAIN OF UNKNOWN FUNCTION 1117 1 (RDUF1) and RDUF2 control seedling photomorphogenesis in Arabidopsis.\",\"authors\":\"Annayasa Modak,Shivani Singh,Chirag Singhal,Gouranga Upadhyaya,Jinia Chakrabarty,Sreeramaiah N Gangappa\",\"doi\":\"10.1111/nph.70169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-ELONGATED HYPOCOTYL5 (HY5) circuit controls plant seedling photomorphogenesis. Regulation of HY5 protein levels is key for optimal photomorphogenic growth. This study identified the E3 ubiquitin ligases Really Interesting New Gene (RING) DOMAIN OF UNKNOWN FUNCTION 1117 1 (RDUF1) and RDUF2 as novel components of the COP1-HY5 pathway in Arabidopsis. The RDUF1 and RDUF2 knockout mutants exhibited longer hypocotyls with reduced photopigment accumulation than the wild-type. In comparison, the overexpression transgenic lines showed shorter hypocotyls with enhanced photomorphogenic responses in a wavelength-independent manner. HY5 directly binds to the RDUF1 and RDUF2 promoters through the G-box, activating their expression in response to light. Epistatic analysis and biochemical data showed that RDUF1 and RDUF2 genetically interact with and stabilize the HY5 protein, plausibly engaging the N77 part of HY5 and preventing COP1-mediated ubiquitination and degradation. In the dark, COP1 physically interacted with and ubiquitinated RDUF1 and RDUF2, subjecting them to degradation to keep HY5 levels low and promote skotomorphogenesis. However, light-mediated inhibition of COP1 activity mediated by photoreceptors increased RDUF1 and RDUF2 accumulation, enhancing HY5 protein stability and photomorphogenesis. This study establishes COP1-RDUF1/RDUF2-HY5 as a regulatory module of seedling photomorphogenesis under dynamic light cues.\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.70169\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70169","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本构型光形态发生1 (COP1)-细长下胚轴l5 (HY5)回路控制植物幼苗光形态发生。调节HY5蛋白水平是最佳光形态形成生长的关键。本研究发现E3泛素连接酶Really Interesting New Gene (RING) DOMAIN OF UNKNOWN FUNCTION 11171 (RDUF1)和RDUF2是拟南芥COP1-HY5通路的新组分。与野生型相比,RDUF1和RDUF2基因敲除突变体的下胚轴更长,光色素积累减少。相比之下,过表达转基因株系的下胚轴较短,光形态形成反应增强,且与波长无关。HY5通过G-box直接与RDUF1和RDUF2启动子结合,激活它们对光的表达。上位性分析和生化数据表明,RDUF1和RDUF2与HY5蛋白相互作用并稳定了HY5蛋白,可能参与了HY5的N77部分,阻止了cop1介导的泛素化和降解。在黑暗中,COP1与RDUF1和RDUF2物理相互作用并泛素化,使其降解以保持低水平的HY5并促进大脑形态形成。然而,光感受器介导的光介导的COP1活性抑制增加了RDUF1和RDUF2的积累,增强了HY5蛋白的稳定性和光形态形成。本研究确定了COP1-RDUF1/RDUF2-HY5是动态光照下幼苗光形态发生的调控模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The E3 ubiquitin ligases RING DOMAIN OF UNKNOWN FUNCTION 1117 1 (RDUF1) and RDUF2 control seedling photomorphogenesis in Arabidopsis.
The CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-ELONGATED HYPOCOTYL5 (HY5) circuit controls plant seedling photomorphogenesis. Regulation of HY5 protein levels is key for optimal photomorphogenic growth. This study identified the E3 ubiquitin ligases Really Interesting New Gene (RING) DOMAIN OF UNKNOWN FUNCTION 1117 1 (RDUF1) and RDUF2 as novel components of the COP1-HY5 pathway in Arabidopsis. The RDUF1 and RDUF2 knockout mutants exhibited longer hypocotyls with reduced photopigment accumulation than the wild-type. In comparison, the overexpression transgenic lines showed shorter hypocotyls with enhanced photomorphogenic responses in a wavelength-independent manner. HY5 directly binds to the RDUF1 and RDUF2 promoters through the G-box, activating their expression in response to light. Epistatic analysis and biochemical data showed that RDUF1 and RDUF2 genetically interact with and stabilize the HY5 protein, plausibly engaging the N77 part of HY5 and preventing COP1-mediated ubiquitination and degradation. In the dark, COP1 physically interacted with and ubiquitinated RDUF1 and RDUF2, subjecting them to degradation to keep HY5 levels low and promote skotomorphogenesis. However, light-mediated inhibition of COP1 activity mediated by photoreceptors increased RDUF1 and RDUF2 accumulation, enhancing HY5 protein stability and photomorphogenesis. This study establishes COP1-RDUF1/RDUF2-HY5 as a regulatory module of seedling photomorphogenesis under dynamic light cues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信