通过筛选电解质性质解读金属锂阳极的库仑效率。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhao Zheng,Xinyan Liu,Xue-Qiang Zhang,Shu-Yu Sun,Jia-Lin Li,Ya-Nan Wang,Nan Yao,Dong-Hao Zhan,Wen-Jun Feng,Hong-Jie Peng,Jiang-Kui Hu,Jia-Qi Huang,Qiang Zhang
{"title":"通过筛选电解质性质解读金属锂阳极的库仑效率。","authors":"Zhao Zheng,Xinyan Liu,Xue-Qiang Zhang,Shu-Yu Sun,Jia-Lin Li,Ya-Nan Wang,Nan Yao,Dong-Hao Zhan,Wen-Jun Feng,Hong-Jie Peng,Jiang-Kui Hu,Jia-Qi Huang,Qiang Zhang","doi":"10.1002/anie.202507387","DOIUrl":null,"url":null,"abstract":"Coulombic efficiency (CE) is a quantifiable indicator for the reversibility of lithium metal anodes in high-energy-density batteries. However, the quantitative relationship between CE and electrolyte properties has yet to be established, impeding rational electrolyte design. Herein, an interpretable model for estimating CE based on data-driven insights of electrolyte properties is proposed. Hydrogenbond acceptor basicity (β) and the energy level gap between the lowest unoccupied and the highest occupied molecular orbital (HOMO-LUMO gap) of solvents are identified as the top two parameters impacting CE by machine learning. β and HOMO-LUMO gap of solvents govern anode interphase chemistry. A regression model is further proposed to estimate the CE based on β and HOMOLUMO gap. Using the new solvent screened by above regression model, the Li metal anode in the pouch cell with an energy density of 418 Wh kg-1 achieves the highest CE of 99.2%, which is much larger than previous CE ranging from 70-98.5%. This work provides a reliable interpretable quantitative model for rational electrolyte design.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":"e202507387"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering Coulombic Efficiency of Lithium Metal Anodes by Screening Electrolyte Properties.\",\"authors\":\"Zhao Zheng,Xinyan Liu,Xue-Qiang Zhang,Shu-Yu Sun,Jia-Lin Li,Ya-Nan Wang,Nan Yao,Dong-Hao Zhan,Wen-Jun Feng,Hong-Jie Peng,Jiang-Kui Hu,Jia-Qi Huang,Qiang Zhang\",\"doi\":\"10.1002/anie.202507387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coulombic efficiency (CE) is a quantifiable indicator for the reversibility of lithium metal anodes in high-energy-density batteries. However, the quantitative relationship between CE and electrolyte properties has yet to be established, impeding rational electrolyte design. Herein, an interpretable model for estimating CE based on data-driven insights of electrolyte properties is proposed. Hydrogenbond acceptor basicity (β) and the energy level gap between the lowest unoccupied and the highest occupied molecular orbital (HOMO-LUMO gap) of solvents are identified as the top two parameters impacting CE by machine learning. β and HOMO-LUMO gap of solvents govern anode interphase chemistry. A regression model is further proposed to estimate the CE based on β and HOMOLUMO gap. Using the new solvent screened by above regression model, the Li metal anode in the pouch cell with an energy density of 418 Wh kg-1 achieves the highest CE of 99.2%, which is much larger than previous CE ranging from 70-98.5%. This work provides a reliable interpretable quantitative model for rational electrolyte design.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"1 1\",\"pages\":\"e202507387\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202507387\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202507387","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

库仑效率(CE)是高能量密度电池中锂金属阳极可逆性的可量化指标。然而,CE与电解质性能之间的定量关系尚未建立,这阻碍了合理的电解质设计。本文提出了一种可解释的模型,用于基于数据驱动的电解质特性分析来估计CE。通过机器学习,确定了影响CE的前两个参数为溶剂的氢键受体碱度(β)和最低未占据分子轨道与最高已占据分子轨道之间的能级间隙(HOMO-LUMO间隙)。溶剂的β和HOMO-LUMO间隙控制阳极间相化学。进一步提出了一种基于β和HOMOLUMO间隙估计CE的回归模型。利用上述回归模型筛选的新型溶剂,在能量密度为418 Wh kg-1的袋状电池中,锂金属阳极的CE最高达到99.2%,大大高于以往70-98.5%的CE。这项工作为合理的电解质设计提供了一个可靠的可解释的定量模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering Coulombic Efficiency of Lithium Metal Anodes by Screening Electrolyte Properties.
Coulombic efficiency (CE) is a quantifiable indicator for the reversibility of lithium metal anodes in high-energy-density batteries. However, the quantitative relationship between CE and electrolyte properties has yet to be established, impeding rational electrolyte design. Herein, an interpretable model for estimating CE based on data-driven insights of electrolyte properties is proposed. Hydrogenbond acceptor basicity (β) and the energy level gap between the lowest unoccupied and the highest occupied molecular orbital (HOMO-LUMO gap) of solvents are identified as the top two parameters impacting CE by machine learning. β and HOMO-LUMO gap of solvents govern anode interphase chemistry. A regression model is further proposed to estimate the CE based on β and HOMOLUMO gap. Using the new solvent screened by above regression model, the Li metal anode in the pouch cell with an energy density of 418 Wh kg-1 achieves the highest CE of 99.2%, which is much larger than previous CE ranging from 70-98.5%. This work provides a reliable interpretable quantitative model for rational electrolyte design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信