{"title":"聚苯乙烯纳米塑料粒子的大气氧化和云凝结核活性表征。","authors":"Sahir Gagan,Alana J Dodero,Miska Olin,Ruizhe Liu,Zezhen Cheng,Sining Niu,Yeaseul Kim,Andrew T Lambe,Yuzhi Chen,Swarup China,Yue Zhang","doi":"10.1021/acs.est.4c11738","DOIUrl":null,"url":null,"abstract":"Nanoplastic particles (NPPs) are emerging anthropogenic pollutants and have been etected in urban, rural, and remote areas. Characterizing the lifetime, fate, and cloud-forming potential of atmospheric NPPs improves our understanding of their environmental processes and climate impacts. This study provides the first quantified heterogeneous reaction rate and lifetime of polystyrene (PS) NPPs against common atmospheric oxidants. The atomized PS NPPs were introduced to a Potential Aerosol Mass (PAM) oxidation flow reactor with ·OH exposure of 0 to 1.5 × 1012 molecules cm-3 s, equivalent to atmospheric exposure from 0 to 18 days, assuming an ambient ·OH concentration of 1 × 106 cm-3. The decay of the PS mass concentration was quantified by monitoring tracer ions, C6H6+ (m/z 78) and C8H8+ (m/z 104), by using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The pseudo-first-order rate constant of PS particles reacting with ·OH, kOH, was determined to be (3.2 ± 0.7) × 10-13 cm3 molecule-1 s-1, equivalent to a half-lifetime of a few hours to ∼80 days in the atmosphere, depending on particle sizes and hydroxyl radical concentrations. The hygroscopicity of 100 nm PS NPPs at different ·OH exposure levels was quantified using a cloud condensation nuclei counter (CCNC), showing a twofold increase of hygroscopicity parameter upon 27 days of atmospheric photooxidation.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"11 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Atmospheric Oxidation and Cloud Condensation Nuclei Activity of Polystyrene Nanoplastic Particles.\",\"authors\":\"Sahir Gagan,Alana J Dodero,Miska Olin,Ruizhe Liu,Zezhen Cheng,Sining Niu,Yeaseul Kim,Andrew T Lambe,Yuzhi Chen,Swarup China,Yue Zhang\",\"doi\":\"10.1021/acs.est.4c11738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoplastic particles (NPPs) are emerging anthropogenic pollutants and have been etected in urban, rural, and remote areas. Characterizing the lifetime, fate, and cloud-forming potential of atmospheric NPPs improves our understanding of their environmental processes and climate impacts. This study provides the first quantified heterogeneous reaction rate and lifetime of polystyrene (PS) NPPs against common atmospheric oxidants. The atomized PS NPPs were introduced to a Potential Aerosol Mass (PAM) oxidation flow reactor with ·OH exposure of 0 to 1.5 × 1012 molecules cm-3 s, equivalent to atmospheric exposure from 0 to 18 days, assuming an ambient ·OH concentration of 1 × 106 cm-3. The decay of the PS mass concentration was quantified by monitoring tracer ions, C6H6+ (m/z 78) and C8H8+ (m/z 104), by using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The pseudo-first-order rate constant of PS particles reacting with ·OH, kOH, was determined to be (3.2 ± 0.7) × 10-13 cm3 molecule-1 s-1, equivalent to a half-lifetime of a few hours to ∼80 days in the atmosphere, depending on particle sizes and hydroxyl radical concentrations. The hygroscopicity of 100 nm PS NPPs at different ·OH exposure levels was quantified using a cloud condensation nuclei counter (CCNC), showing a twofold increase of hygroscopicity parameter upon 27 days of atmospheric photooxidation.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c11738\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11738","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Characterizing Atmospheric Oxidation and Cloud Condensation Nuclei Activity of Polystyrene Nanoplastic Particles.
Nanoplastic particles (NPPs) are emerging anthropogenic pollutants and have been etected in urban, rural, and remote areas. Characterizing the lifetime, fate, and cloud-forming potential of atmospheric NPPs improves our understanding of their environmental processes and climate impacts. This study provides the first quantified heterogeneous reaction rate and lifetime of polystyrene (PS) NPPs against common atmospheric oxidants. The atomized PS NPPs were introduced to a Potential Aerosol Mass (PAM) oxidation flow reactor with ·OH exposure of 0 to 1.5 × 1012 molecules cm-3 s, equivalent to atmospheric exposure from 0 to 18 days, assuming an ambient ·OH concentration of 1 × 106 cm-3. The decay of the PS mass concentration was quantified by monitoring tracer ions, C6H6+ (m/z 78) and C8H8+ (m/z 104), by using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The pseudo-first-order rate constant of PS particles reacting with ·OH, kOH, was determined to be (3.2 ± 0.7) × 10-13 cm3 molecule-1 s-1, equivalent to a half-lifetime of a few hours to ∼80 days in the atmosphere, depending on particle sizes and hydroxyl radical concentrations. The hygroscopicity of 100 nm PS NPPs at different ·OH exposure levels was quantified using a cloud condensation nuclei counter (CCNC), showing a twofold increase of hygroscopicity parameter upon 27 days of atmospheric photooxidation.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.