{"title":"环境电荷介导的纳米压电催化声动力疗法。","authors":"Jiachen Xu,Xiaomin Ma,Jingming Wang,Chengmei Zhang,Xiangdong Liu,Yuanyuan Qu,Mingwen Zhao,Weifeng Li,Weimin Huang,Yong-Qiang Li","doi":"10.1021/acs.nanolett.5c02110","DOIUrl":null,"url":null,"abstract":"Piezocatalysis garners growing attention in sonodynamic therapy (SDT). However, its mechanism remains controversial due to the prominent but conflicting theories of energy band and piezoelectric effect. The former just focuses on the role of carriers, while the latter emphasizes only the contribution of screening charges. This divergence greatly hinders the development of piezocatalysis-mediated SDT. Here, we demonstrate the combined action of carriers (electrons/holes) and screening charges on piezocatalysis and propose a new piezocatalytic model (termed environmental charge-mediated nanopiezocatalysis) based on defective BaTiO3@TiO2 piezoelectric nanoparticles (D-B@T). The synergistic effect of carriers and screening charges endows D-B@T with superior reactive oxygen species generation capability under ultrasound stimulation and enables effective SDT treatment of bacterial pneumonia in vivo. This work offers an insightful understanding of piezocatalysis and guides the rational design of high-performance piezoelectric nanosonosensitizers for SDT.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Charge-Mediated Nanopiezocatalysis for Sonodynamic Therapy.\",\"authors\":\"Jiachen Xu,Xiaomin Ma,Jingming Wang,Chengmei Zhang,Xiangdong Liu,Yuanyuan Qu,Mingwen Zhao,Weifeng Li,Weimin Huang,Yong-Qiang Li\",\"doi\":\"10.1021/acs.nanolett.5c02110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezocatalysis garners growing attention in sonodynamic therapy (SDT). However, its mechanism remains controversial due to the prominent but conflicting theories of energy band and piezoelectric effect. The former just focuses on the role of carriers, while the latter emphasizes only the contribution of screening charges. This divergence greatly hinders the development of piezocatalysis-mediated SDT. Here, we demonstrate the combined action of carriers (electrons/holes) and screening charges on piezocatalysis and propose a new piezocatalytic model (termed environmental charge-mediated nanopiezocatalysis) based on defective BaTiO3@TiO2 piezoelectric nanoparticles (D-B@T). The synergistic effect of carriers and screening charges endows D-B@T with superior reactive oxygen species generation capability under ultrasound stimulation and enables effective SDT treatment of bacterial pneumonia in vivo. This work offers an insightful understanding of piezocatalysis and guides the rational design of high-performance piezoelectric nanosonosensitizers for SDT.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c02110\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02110","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Environmental Charge-Mediated Nanopiezocatalysis for Sonodynamic Therapy.
Piezocatalysis garners growing attention in sonodynamic therapy (SDT). However, its mechanism remains controversial due to the prominent but conflicting theories of energy band and piezoelectric effect. The former just focuses on the role of carriers, while the latter emphasizes only the contribution of screening charges. This divergence greatly hinders the development of piezocatalysis-mediated SDT. Here, we demonstrate the combined action of carriers (electrons/holes) and screening charges on piezocatalysis and propose a new piezocatalytic model (termed environmental charge-mediated nanopiezocatalysis) based on defective BaTiO3@TiO2 piezoelectric nanoparticles (D-B@T). The synergistic effect of carriers and screening charges endows D-B@T with superior reactive oxygen species generation capability under ultrasound stimulation and enables effective SDT treatment of bacterial pneumonia in vivo. This work offers an insightful understanding of piezocatalysis and guides the rational design of high-performance piezoelectric nanosonosensitizers for SDT.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.