无标签和智能细胞死亡识别在肺癌化疗中的应用

Shubin Wei, Guoqing Luo, Zhaoyi Ye, Yueyun Weng, Liye Mei, Yan Jin, Yi Liu, Du Wang, Sheng Liu, Qing Geng, Cheng Lei
{"title":"无标签和智能细胞死亡识别在肺癌化疗中的应用","authors":"Shubin Wei, Guoqing Luo, Zhaoyi Ye, Yueyun Weng, Liye Mei, Yan Jin, Yi Liu, Du Wang, Sheng Liu, Qing Geng, Cheng Lei","doi":"10.1002/jbio.202500127","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of high-throughput, label-free, and intelligent recognition models for assessing cell death hinders the broad application of cell death analysis in chemotherapy for lung cancer. We propose an intelligent quantitative detection technique for cell deaths. Using high-throughput quantitative phase imaging flow cytometry to capture numerous label-free images and employing convolutional neural networks (CNN) to characterize the heterogeneity and quantitative detection of cell death. We revealed the heterogeneity of cell death through morphology features and achieved interpretability analysis of the CNN using clustering. Finally, the classification reliability of the CNN was validated by extracting features from classified cells. This method, compared with biochemical methods, showed a correlation of 0.92 and 0.91 with autophagy detection (Pearson and Cosine Similarity), and an average error of 12.52% with apoptosis detection. Our approach has the potential to become a valuable tool for studying cell death mechanisms and offers a new perspective for cancer treatment.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500127"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-Free and Intelligent Cell Death Recognition Toward Lung Cancer Chemotherapy.\",\"authors\":\"Shubin Wei, Guoqing Luo, Zhaoyi Ye, Yueyun Weng, Liye Mei, Yan Jin, Yi Liu, Du Wang, Sheng Liu, Qing Geng, Cheng Lei\",\"doi\":\"10.1002/jbio.202500127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lack of high-throughput, label-free, and intelligent recognition models for assessing cell death hinders the broad application of cell death analysis in chemotherapy for lung cancer. We propose an intelligent quantitative detection technique for cell deaths. Using high-throughput quantitative phase imaging flow cytometry to capture numerous label-free images and employing convolutional neural networks (CNN) to characterize the heterogeneity and quantitative detection of cell death. We revealed the heterogeneity of cell death through morphology features and achieved interpretability analysis of the CNN using clustering. Finally, the classification reliability of the CNN was validated by extracting features from classified cells. This method, compared with biochemical methods, showed a correlation of 0.92 and 0.91 with autophagy detection (Pearson and Cosine Similarity), and an average error of 12.52% with apoptosis detection. Our approach has the potential to become a valuable tool for studying cell death mechanisms and offers a new perspective for cancer treatment.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

缺乏用于评估细胞死亡的高通量、无标签和智能识别模型阻碍了细胞死亡分析在肺癌化疗中的广泛应用。我们提出了一种智能的细胞死亡定量检测技术。使用高通量定量相成像流式细胞术捕获大量无标记图像,并使用卷积神经网络(CNN)表征细胞死亡的异质性和定量检测。我们通过形态学特征揭示了细胞死亡的异质性,并利用聚类实现了CNN的可解释性分析。最后,通过从分类细胞中提取特征来验证CNN的分类可靠性。与生化方法相比,该方法与自噬检测的相关系数分别为0.92和0.91 (Pearson and Cosine Similarity),与细胞凋亡检测的平均误差为12.52%。我们的方法有可能成为研究细胞死亡机制的宝贵工具,并为癌症治疗提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Label-Free and Intelligent Cell Death Recognition Toward Lung Cancer Chemotherapy.

The lack of high-throughput, label-free, and intelligent recognition models for assessing cell death hinders the broad application of cell death analysis in chemotherapy for lung cancer. We propose an intelligent quantitative detection technique for cell deaths. Using high-throughput quantitative phase imaging flow cytometry to capture numerous label-free images and employing convolutional neural networks (CNN) to characterize the heterogeneity and quantitative detection of cell death. We revealed the heterogeneity of cell death through morphology features and achieved interpretability analysis of the CNN using clustering. Finally, the classification reliability of the CNN was validated by extracting features from classified cells. This method, compared with biochemical methods, showed a correlation of 0.92 and 0.91 with autophagy detection (Pearson and Cosine Similarity), and an average error of 12.52% with apoptosis detection. Our approach has the potential to become a valuable tool for studying cell death mechanisms and offers a new perspective for cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信