Huihui Lu, Na He, Lina Zhang, Yayan You, Zhigang Lv
{"title":"革命性的视网膜治疗:纳米颗粒药物载体在管理血管性视网膜疾病中的作用。","authors":"Huihui Lu, Na He, Lina Zhang, Yayan You, Zhigang Lv","doi":"10.2147/OPTH.S503273","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular Retinopathy (VR), such as diabetic retinopathy, pose significant challenges to vision and overall health. Traditional treatment methods often face limitations in efficacy and delivery. Vascular retinopathy is a common and potentially blinding group of eye diseases with core pathologic mechanisms involving vascular injury, ischemia, exudation, and neovascularization. Clinical management relies heavily on etiologic control (eg, diabetes, hypertension), anti-VEGF therapy, laser therapy, and surgical intervention. Recent advancements in nanotechnology have led to the development of innovative nanoparticle drug carriers, which offer promising solutions for targeted and sustained drug delivery in the retinal environment. This review explores the application of both conventional and novel nanoparticle carriers in treating VR. We discuss various types of nanoparticles, including liposomes, polymeric nanoparticles, and metal-based carriers, highlighting their unique properties, mechanisms of action, and therapeutic benefits. Finally, we provide insights into future perspectives for nanoparticle-based therapies in retinal disorders, emphasizing the potential for improved patient outcomes and the need for further research to optimize these advanced drug delivery systems.</p>","PeriodicalId":93945,"journal":{"name":"Clinical ophthalmology (Auckland, N.Z.)","volume":"19 ","pages":"1565-1582"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087915/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Retinal Therapy: The Role of Nanoparticle Drug Carriers in Managing Vascular Retinal Disorders.\",\"authors\":\"Huihui Lu, Na He, Lina Zhang, Yayan You, Zhigang Lv\",\"doi\":\"10.2147/OPTH.S503273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular Retinopathy (VR), such as diabetic retinopathy, pose significant challenges to vision and overall health. Traditional treatment methods often face limitations in efficacy and delivery. Vascular retinopathy is a common and potentially blinding group of eye diseases with core pathologic mechanisms involving vascular injury, ischemia, exudation, and neovascularization. Clinical management relies heavily on etiologic control (eg, diabetes, hypertension), anti-VEGF therapy, laser therapy, and surgical intervention. Recent advancements in nanotechnology have led to the development of innovative nanoparticle drug carriers, which offer promising solutions for targeted and sustained drug delivery in the retinal environment. This review explores the application of both conventional and novel nanoparticle carriers in treating VR. We discuss various types of nanoparticles, including liposomes, polymeric nanoparticles, and metal-based carriers, highlighting their unique properties, mechanisms of action, and therapeutic benefits. Finally, we provide insights into future perspectives for nanoparticle-based therapies in retinal disorders, emphasizing the potential for improved patient outcomes and the need for further research to optimize these advanced drug delivery systems.</p>\",\"PeriodicalId\":93945,\"journal\":{\"name\":\"Clinical ophthalmology (Auckland, N.Z.)\",\"volume\":\"19 \",\"pages\":\"1565-1582\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087915/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical ophthalmology (Auckland, N.Z.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/OPTH.S503273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical ophthalmology (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OPTH.S503273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Revolutionizing Retinal Therapy: The Role of Nanoparticle Drug Carriers in Managing Vascular Retinal Disorders.
Vascular Retinopathy (VR), such as diabetic retinopathy, pose significant challenges to vision and overall health. Traditional treatment methods often face limitations in efficacy and delivery. Vascular retinopathy is a common and potentially blinding group of eye diseases with core pathologic mechanisms involving vascular injury, ischemia, exudation, and neovascularization. Clinical management relies heavily on etiologic control (eg, diabetes, hypertension), anti-VEGF therapy, laser therapy, and surgical intervention. Recent advancements in nanotechnology have led to the development of innovative nanoparticle drug carriers, which offer promising solutions for targeted and sustained drug delivery in the retinal environment. This review explores the application of both conventional and novel nanoparticle carriers in treating VR. We discuss various types of nanoparticles, including liposomes, polymeric nanoparticles, and metal-based carriers, highlighting their unique properties, mechanisms of action, and therapeutic benefits. Finally, we provide insights into future perspectives for nanoparticle-based therapies in retinal disorders, emphasizing the potential for improved patient outcomes and the need for further research to optimize these advanced drug delivery systems.