由骨髓抽液浓缩液、松质骨自体移植物、富血小板血浆和自体纤维蛋白制成的生物再生自体支架治疗股骨、肱骨和前臂骨不连:病例系列

IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING
Regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-05-20 DOI:10.1080/17460751.2025.2507504
Dulic Oliver, Abazovic Dzihan, Obradovic Mirko, Vranjes Miodrag, Lalic Ivica, Ninkovic Srdjan, Rasovic Predrag, Bjelobrk Mile, Baljak Branko, Milinkov Milan, Tosic Milan, Sarac Srdjan
{"title":"由骨髓抽液浓缩液、松质骨自体移植物、富血小板血浆和自体纤维蛋白制成的生物再生自体支架治疗股骨、肱骨和前臂骨不连:病例系列","authors":"Dulic Oliver, Abazovic Dzihan, Obradovic Mirko, Vranjes Miodrag, Lalic Ivica, Ninkovic Srdjan, Rasovic Predrag, Bjelobrk Mile, Baljak Branko, Milinkov Milan, Tosic Milan, Sarac Srdjan","doi":"10.1080/17460751.2025.2507504","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To evaluate the effectiveness of a bioregenerative scaffold created from bone marrow aspirate, cancellous bone autograft, platelet-rich plasma, and autologous fibrin in treating complicated non-unions of the supracondylar femur, humeral shaft, and radius and ulna.</p><p><strong>Methods & materials: </strong>Three patients with non-unions resulting from multiple surgical failures underwent bone stabilization along with the application of a novel bioregenerative scaffold. X-rays and subjective assessments were collected prior to surgery and at 6- and 12-months post-surgery.</p><p><strong>Results: </strong>All non-unions demonstrated healing with adequate callus formation, as confirmed by radiological assessments. By 12 months, all patients were able to resume full weight-bearing activities or regain full range of motion and physical strength without pain. Statistical analysis revealed improvements across all assessment scales compared to pre-surgical values.</p><p><strong>Conclusion: </strong>This approach offers a viable option for treating complex long bone non-unions after multiple surgical interventions.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"123-131"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioregenerative autologous scaffold made from bone marrow aspirate concentrate, cancellous bone autograft, platelet-rich plasma, and autologous fibrin to treat non-unions of the femur, humerus, and forearm bones: a case series.\",\"authors\":\"Dulic Oliver, Abazovic Dzihan, Obradovic Mirko, Vranjes Miodrag, Lalic Ivica, Ninkovic Srdjan, Rasovic Predrag, Bjelobrk Mile, Baljak Branko, Milinkov Milan, Tosic Milan, Sarac Srdjan\",\"doi\":\"10.1080/17460751.2025.2507504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>To evaluate the effectiveness of a bioregenerative scaffold created from bone marrow aspirate, cancellous bone autograft, platelet-rich plasma, and autologous fibrin in treating complicated non-unions of the supracondylar femur, humeral shaft, and radius and ulna.</p><p><strong>Methods & materials: </strong>Three patients with non-unions resulting from multiple surgical failures underwent bone stabilization along with the application of a novel bioregenerative scaffold. X-rays and subjective assessments were collected prior to surgery and at 6- and 12-months post-surgery.</p><p><strong>Results: </strong>All non-unions demonstrated healing with adequate callus formation, as confirmed by radiological assessments. By 12 months, all patients were able to resume full weight-bearing activities or regain full range of motion and physical strength without pain. Statistical analysis revealed improvements across all assessment scales compared to pre-surgical values.</p><p><strong>Conclusion: </strong>This approach offers a viable option for treating complex long bone non-unions after multiple surgical interventions.</p>\",\"PeriodicalId\":21043,\"journal\":{\"name\":\"Regenerative medicine\",\"volume\":\" \",\"pages\":\"123-131\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17460751.2025.2507504\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2025.2507504","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目的:评价骨髓抽吸液、自体松质骨、富血小板血浆和自体纤维蛋白制备的生物再生支架治疗复杂的髁上股骨、肱骨干、桡骨和尺骨不连的疗效。方法与材料:3例因多次手术失败导致骨不连的患者采用新型生物再生支架进行骨稳定治疗。术前、术后6个月和12个月采集x光片和主观评估。结果:放射学评估证实,所有骨不连均愈合,并形成足够的骨痂。到12个月时,所有患者都能恢复完全的负重活动或恢复全方位的运动和体力,没有疼痛。统计分析显示,与术前值相比,所有评估量表均有所改善。结论:该入路是治疗多次手术后复杂长骨不连的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioregenerative autologous scaffold made from bone marrow aspirate concentrate, cancellous bone autograft, platelet-rich plasma, and autologous fibrin to treat non-unions of the femur, humerus, and forearm bones: a case series.

Aim: To evaluate the effectiveness of a bioregenerative scaffold created from bone marrow aspirate, cancellous bone autograft, platelet-rich plasma, and autologous fibrin in treating complicated non-unions of the supracondylar femur, humeral shaft, and radius and ulna.

Methods & materials: Three patients with non-unions resulting from multiple surgical failures underwent bone stabilization along with the application of a novel bioregenerative scaffold. X-rays and subjective assessments were collected prior to surgery and at 6- and 12-months post-surgery.

Results: All non-unions demonstrated healing with adequate callus formation, as confirmed by radiological assessments. By 12 months, all patients were able to resume full weight-bearing activities or regain full range of motion and physical strength without pain. Statistical analysis revealed improvements across all assessment scales compared to pre-surgical values.

Conclusion: This approach offers a viable option for treating complex long bone non-unions after multiple surgical interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative medicine
Regenerative medicine 医学-工程:生物医学
CiteScore
4.20
自引率
3.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization. Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community. Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信