C Cockrell, K Joseph, M K Patel, K Trachenko, R W Grimes
{"title":"杂质和辐射损伤对玻璃网络的影响——载铯磷酸铁分子动力学实例研究。","authors":"C Cockrell, K Joseph, M K Patel, K Trachenko, R W Grimes","doi":"10.1088/1361-648X/adda83","DOIUrl":null,"url":null,"abstract":"<p><p>The use of iron phosphate glass as a wasteform is contingent both on its response to the addition of waste products and on its evolution in response to radiation emitted by these waste products. We perform molecular dynamics simulations of high-energy radiation damage in caesium iron phosphate glasses to study the mobility of caesium, a nuclear decay product, in vitreous wasteforms and their effect on the glass network. We simulate overlapping 70 keV cascades and examine the structural and topological effects that caesium has on the iron phosphate glasses before and after these cascades. We find that the glass network is substantially altered by the presence of caesium as a potent network modifier and that radiation cascades produce qualitatively different effects from those in pure iron phosphate glasses. Overlapping cascades produce minimal effects on the mobility of caesium at low loading. At higher loading, the glass network accommodates caesium atoms less well, particularly after irradiation. We explain this in terms of caesium's role as an excluded network modifier in comparison to iron, which is tightly incorporated into the glass network.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of impurities and radiation damage on the glass network-caesium loaded iron phosphate molecular dynamics case study.\",\"authors\":\"C Cockrell, K Joseph, M K Patel, K Trachenko, R W Grimes\",\"doi\":\"10.1088/1361-648X/adda83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of iron phosphate glass as a wasteform is contingent both on its response to the addition of waste products and on its evolution in response to radiation emitted by these waste products. We perform molecular dynamics simulations of high-energy radiation damage in caesium iron phosphate glasses to study the mobility of caesium, a nuclear decay product, in vitreous wasteforms and their effect on the glass network. We simulate overlapping 70 keV cascades and examine the structural and topological effects that caesium has on the iron phosphate glasses before and after these cascades. We find that the glass network is substantially altered by the presence of caesium as a potent network modifier and that radiation cascades produce qualitatively different effects from those in pure iron phosphate glasses. Overlapping cascades produce minimal effects on the mobility of caesium at low loading. At higher loading, the glass network accommodates caesium atoms less well, particularly after irradiation. We explain this in terms of caesium's role as an excluded network modifier in comparison to iron, which is tightly incorporated into the glass network.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adda83\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adda83","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
The effect of impurities and radiation damage on the glass network-caesium loaded iron phosphate molecular dynamics case study.
The use of iron phosphate glass as a wasteform is contingent both on its response to the addition of waste products and on its evolution in response to radiation emitted by these waste products. We perform molecular dynamics simulations of high-energy radiation damage in caesium iron phosphate glasses to study the mobility of caesium, a nuclear decay product, in vitreous wasteforms and their effect on the glass network. We simulate overlapping 70 keV cascades and examine the structural and topological effects that caesium has on the iron phosphate glasses before and after these cascades. We find that the glass network is substantially altered by the presence of caesium as a potent network modifier and that radiation cascades produce qualitatively different effects from those in pure iron phosphate glasses. Overlapping cascades produce minimal effects on the mobility of caesium at low loading. At higher loading, the glass network accommodates caesium atoms less well, particularly after irradiation. We explain this in terms of caesium's role as an excluded network modifier in comparison to iron, which is tightly incorporated into the glass network.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.