Zhida Hu, Shun Hu, Minghao Zhang, Wenshuo Wu, Shuangqing Fan, Jie Su
{"title":"基于铟镓锌氧化物神经形态晶体管的光电协同性能。","authors":"Zhida Hu, Shun Hu, Minghao Zhang, Wenshuo Wu, Shuangqing Fan, Jie Su","doi":"10.1088/1361-6528/adda51","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the human visual perception system, optoelectronic devices have attracted growing interest in advanced machine vision systems. Despite significant advancements in optical sensors, the synergy between optoelectronics remains underdeveloped. In this study, we propose a transistor fabricated via magnetron sputtering of indium-gallium-zinc oxide (In: Ga: Zn = 1:1:1 mol%) that serves as an inhibitory device, simulating key biological synaptic functions through its electrical properties, including excitatory postsynaptic currents and paired-pulse facilitation. Furthermore, by exploiting the intrinsic photoresponse characteristics of IGZO and the short-term and long-term memory behaviors induced by optical stimulation, we simulate synapses modulated by light of varying wavelengths. As a phototransistor, this device successfully simulates complex synaptic behaviors, including Morse code. It also simulates the Mach bands, a phenomenon of lateral inhibition observed in biology. Additionally, the optoelectronic effect of the phototransistor is applied in neural network recognition, achieving a recognition rate of 85.8%.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optoelectronic synergistic properties based on indium-gallium-zinc oxide neuromorphic transistors.\",\"authors\":\"Zhida Hu, Shun Hu, Minghao Zhang, Wenshuo Wu, Shuangqing Fan, Jie Su\",\"doi\":\"10.1088/1361-6528/adda51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inspired by the human visual perception system, optoelectronic devices have attracted growing interest in advanced machine vision systems. Despite significant advancements in optical sensors, the synergy between optoelectronics remains underdeveloped. In this study, we propose a transistor fabricated via magnetron sputtering of indium-gallium-zinc oxide (In: Ga: Zn = 1:1:1 mol%) that serves as an inhibitory device, simulating key biological synaptic functions through its electrical properties, including excitatory postsynaptic currents and paired-pulse facilitation. Furthermore, by exploiting the intrinsic photoresponse characteristics of IGZO and the short-term and long-term memory behaviors induced by optical stimulation, we simulate synapses modulated by light of varying wavelengths. As a phototransistor, this device successfully simulates complex synaptic behaviors, including Morse code. It also simulates the Mach bands, a phenomenon of lateral inhibition observed in biology. Additionally, the optoelectronic effect of the phototransistor is applied in neural network recognition, achieving a recognition rate of 85.8%.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/adda51\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adda51","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The optoelectronic synergistic properties based on indium-gallium-zinc oxide neuromorphic transistors.
Inspired by the human visual perception system, optoelectronic devices have attracted growing interest in advanced machine vision systems. Despite significant advancements in optical sensors, the synergy between optoelectronics remains underdeveloped. In this study, we propose a transistor fabricated via magnetron sputtering of indium-gallium-zinc oxide (In: Ga: Zn = 1:1:1 mol%) that serves as an inhibitory device, simulating key biological synaptic functions through its electrical properties, including excitatory postsynaptic currents and paired-pulse facilitation. Furthermore, by exploiting the intrinsic photoresponse characteristics of IGZO and the short-term and long-term memory behaviors induced by optical stimulation, we simulate synapses modulated by light of varying wavelengths. As a phototransistor, this device successfully simulates complex synaptic behaviors, including Morse code. It also simulates the Mach bands, a phenomenon of lateral inhibition observed in biology. Additionally, the optoelectronic effect of the phototransistor is applied in neural network recognition, achieving a recognition rate of 85.8%.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.