成像超过散射极限的神经元电压。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-06-01 Epub Date: 2025-05-19 DOI:10.1038/s41592-025-02692-5
Tsai-Wen Chen, Xian-Bin Huang, Sarah E Plutkis, Katie L Holland, Luke D Lavis, Bei-Jung Lin
{"title":"成像超过散射极限的神经元电压。","authors":"Tsai-Wen Chen, Xian-Bin Huang, Sarah E Plutkis, Katie L Holland, Luke D Lavis, Bei-Jung Lin","doi":"10.1038/s41592-025-02692-5","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage imaging is a promising technique for high-speed recording of neuronal population activity. However, tissue scattering severely limits its application in dense neuronal populations. Here we adopt the principle of localization microscopy, a technique that enables super-resolution imaging of single molecules, to resolve dense neuronal activities in vivo. Leveraging the sparse activation of neurons during action potentials (APs), we precisely localize the fluorescence changes associated with each AP, creating a super-resolution image of neuronal activity. This approach, termed activity localization imaging (ALI), identifies overlapping neurons and separates their activities with over tenfold greater precision than what tissue scattering permits. We applied ALI to widefield, targeted illumination and light sheet microscopy data, resolving neurons that cannot be distinguished by existing signal extraction pipelines. In the mouse hippocampus, ALI generates a cellular resolution map of theta oscillations, revealing the diversity of neuronal phase locking within a dense local network.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1366-1375"},"PeriodicalIF":36.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165860/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imaging neuronal voltage beyond the scattering limit.\",\"authors\":\"Tsai-Wen Chen, Xian-Bin Huang, Sarah E Plutkis, Katie L Holland, Luke D Lavis, Bei-Jung Lin\",\"doi\":\"10.1038/s41592-025-02692-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Voltage imaging is a promising technique for high-speed recording of neuronal population activity. However, tissue scattering severely limits its application in dense neuronal populations. Here we adopt the principle of localization microscopy, a technique that enables super-resolution imaging of single molecules, to resolve dense neuronal activities in vivo. Leveraging the sparse activation of neurons during action potentials (APs), we precisely localize the fluorescence changes associated with each AP, creating a super-resolution image of neuronal activity. This approach, termed activity localization imaging (ALI), identifies overlapping neurons and separates their activities with over tenfold greater precision than what tissue scattering permits. We applied ALI to widefield, targeted illumination and light sheet microscopy data, resolving neurons that cannot be distinguished by existing signal extraction pipelines. In the mouse hippocampus, ALI generates a cellular resolution map of theta oscillations, revealing the diversity of neuronal phase locking within a dense local network.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"1366-1375\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02692-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02692-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

电压成像是一种很有前途的高速记录神经元群活动的技术。然而,组织散射严重限制了其在密集神经元群体中的应用。在这里,我们采用定位显微镜的原理,这是一种能够对单个分子进行超分辨率成像的技术,以解决体内密集的神经元活动。利用动作电位(AP)期间神经元的稀疏激活,我们精确定位与每个AP相关的荧光变化,创建神经元活动的超分辨率图像。这种方法被称为活动定位成像(ALI),可以识别重叠的神经元,并以比组织散射所允许的精度高十倍以上的精度分离它们的活动。我们将ALI应用于宽视场、靶向照明和光片显微镜数据,解决了现有信号提取管道无法区分的神经元。在小鼠海马中,ALI生成theta振荡的细胞分辨率图,揭示了密集局部网络中神经元相锁定的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imaging neuronal voltage beyond the scattering limit.

Voltage imaging is a promising technique for high-speed recording of neuronal population activity. However, tissue scattering severely limits its application in dense neuronal populations. Here we adopt the principle of localization microscopy, a technique that enables super-resolution imaging of single molecules, to resolve dense neuronal activities in vivo. Leveraging the sparse activation of neurons during action potentials (APs), we precisely localize the fluorescence changes associated with each AP, creating a super-resolution image of neuronal activity. This approach, termed activity localization imaging (ALI), identifies overlapping neurons and separates their activities with over tenfold greater precision than what tissue scattering permits. We applied ALI to widefield, targeted illumination and light sheet microscopy data, resolving neurons that cannot be distinguished by existing signal extraction pipelines. In the mouse hippocampus, ALI generates a cellular resolution map of theta oscillations, revealing the diversity of neuronal phase locking within a dense local network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信