{"title":"微/纳米结构钛表面离子预载引发的Sr/ zn -磷酸转化膜的结构优化,用于细菌感染控制和促进成骨。","authors":"Kangqing Zuo, Aonan Li, Taoning Si, Weiyi Lei, Yusheng Liu, Linbo Zhang, Taixing Zhang, Guiyong Xiao, Yupeng Lu, Ningbo Li","doi":"10.1186/s12951-025-03443-6","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphate conversion coatings on metallic implants can synergistically integrate functional components and structural regulation, offering excellent biocompatibility and osteogenic activity. However, the passive oxide layer on the titanium (Ti) surface impedes the following chemical reactivity, adversely affecting the microstructure and properties of phosphate coatings. This study proposes a strategy for achieving structural optimization and properties enhancement of strontium-zinc phosphate (SrZnP) conversion coatings on Ti via regulating interface chemical reaction between coatings and Ti substrates. The results indicated that Sr<sup>2+</sup> and Zn<sup>2+</sup> ions-preloading (IPL) treatment enhanced the interfacial reactivity, which can further achieve crystal refinement and uniform crystal size in nucleation. In contrast, microstructural modifications on Ti substrates induced by acid etching, sandblasting, and alkali etching had minimal effects on the phase composition and crystal morphology (irregular cubic) of the SrZnP coatings. The coatings on IPL-Ti exhibited better mechanical properties and corrosion resistance. Besides, the coatings with optimized structures and surface characteristics elicited bacterial growth inhibition rates of 91.09% and 84.04% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Meanwhile, the crystal-refined coatings further significantly enhanced the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs), proving anticipated osteogenic activity. Overall, the ions preloading strategy on variable micro/nanostructured Ti substrates facilitates the potential application of Sr/Zn-phosphate conversion coatings for repairing infected bone defects.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"361"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural optimization of Sr/Zn-phosphate conversion coatings triggered by ions preloading on micro/nanostructured titanium surfaces for bacterial infection control and enhanced osteogenesis.\",\"authors\":\"Kangqing Zuo, Aonan Li, Taoning Si, Weiyi Lei, Yusheng Liu, Linbo Zhang, Taixing Zhang, Guiyong Xiao, Yupeng Lu, Ningbo Li\",\"doi\":\"10.1186/s12951-025-03443-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphate conversion coatings on metallic implants can synergistically integrate functional components and structural regulation, offering excellent biocompatibility and osteogenic activity. However, the passive oxide layer on the titanium (Ti) surface impedes the following chemical reactivity, adversely affecting the microstructure and properties of phosphate coatings. This study proposes a strategy for achieving structural optimization and properties enhancement of strontium-zinc phosphate (SrZnP) conversion coatings on Ti via regulating interface chemical reaction between coatings and Ti substrates. The results indicated that Sr<sup>2+</sup> and Zn<sup>2+</sup> ions-preloading (IPL) treatment enhanced the interfacial reactivity, which can further achieve crystal refinement and uniform crystal size in nucleation. In contrast, microstructural modifications on Ti substrates induced by acid etching, sandblasting, and alkali etching had minimal effects on the phase composition and crystal morphology (irregular cubic) of the SrZnP coatings. The coatings on IPL-Ti exhibited better mechanical properties and corrosion resistance. Besides, the coatings with optimized structures and surface characteristics elicited bacterial growth inhibition rates of 91.09% and 84.04% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Meanwhile, the crystal-refined coatings further significantly enhanced the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs), proving anticipated osteogenic activity. Overall, the ions preloading strategy on variable micro/nanostructured Ti substrates facilitates the potential application of Sr/Zn-phosphate conversion coatings for repairing infected bone defects.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"361\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03443-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03443-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Structural optimization of Sr/Zn-phosphate conversion coatings triggered by ions preloading on micro/nanostructured titanium surfaces for bacterial infection control and enhanced osteogenesis.
Phosphate conversion coatings on metallic implants can synergistically integrate functional components and structural regulation, offering excellent biocompatibility and osteogenic activity. However, the passive oxide layer on the titanium (Ti) surface impedes the following chemical reactivity, adversely affecting the microstructure and properties of phosphate coatings. This study proposes a strategy for achieving structural optimization and properties enhancement of strontium-zinc phosphate (SrZnP) conversion coatings on Ti via regulating interface chemical reaction between coatings and Ti substrates. The results indicated that Sr2+ and Zn2+ ions-preloading (IPL) treatment enhanced the interfacial reactivity, which can further achieve crystal refinement and uniform crystal size in nucleation. In contrast, microstructural modifications on Ti substrates induced by acid etching, sandblasting, and alkali etching had minimal effects on the phase composition and crystal morphology (irregular cubic) of the SrZnP coatings. The coatings on IPL-Ti exhibited better mechanical properties and corrosion resistance. Besides, the coatings with optimized structures and surface characteristics elicited bacterial growth inhibition rates of 91.09% and 84.04% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Meanwhile, the crystal-refined coatings further significantly enhanced the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs), proving anticipated osteogenic activity. Overall, the ions preloading strategy on variable micro/nanostructured Ti substrates facilitates the potential application of Sr/Zn-phosphate conversion coatings for repairing infected bone defects.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.