Sanjana Mishra, Prekshi Garg, Mala Trivedi, Prachi Srivastava
{"title":"多系统生物学方法揭示了hsa-miR-21在高血压患者神经系统疾病风险增加中的作用。","authors":"Sanjana Mishra, Prekshi Garg, Mala Trivedi, Prachi Srivastava","doi":"10.1038/s41371-025-01027-3","DOIUrl":null,"url":null,"abstract":"Hypertension is a prevalent disease that substantially elevates the risk of neurological disorders such as dementia, stroke and Parkinson’s disease. MicroRNAs (miRNAs) play a critical role in the regulation of gene expression related to brain function and disorders. Understanding the involvement of miRNAs in these conditions could provide new insights into potential therapeutic targets. The main objective of this study is to target and investigate microRNAs (miRNAs) associated with neurological disorders in patients suffering from hypertension. The genes involved in hypertension were identified from various databases including GeneCard, MalaCard, DisGeNet, OMIM & GEO2R. The key gene for hypertension was identified using a systems biology approach. Also, potent phytochemical for hypertension was determined by computer-aided drug-designing approach. Functional miRNAs were determined for the key target gene using miRNet analytics platform by hypergeometric tests. Further, the gene-miRNA interaction was determined and enrichment analysis was done. RPS27A was identified as a key target gene for hypertension. Naringenin showed effective molecular interaction with RPS27A with a binding energy score (−6.28). Further, a list of miRNAs which were targeting brain disorders was determined from miRNet. A gene-miRNA network was constructed using the PSRR tool for Parkinson’s Disease, Autism Spectrum Disorder, Acute Cerebral Infarction, ACTH-Secreting Pituitary Adenoma, & Ependymoma. Further, miRNA 21 & miRNA 16 were found to be associated with four of the neurological disorders. The study identifies specific miRNAs that may serve as potential biomarkers for brain disorders in hypertensive patients. Targeting these miRNAs could open new avenues for therapeutic strategies aimed at mitigating neurological damage in this patient population.","PeriodicalId":16070,"journal":{"name":"Journal of Human Hypertension","volume":"39 6","pages":"432-441"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple system biology approaches reveals the role of the hsa-miR-21 in increasing risk of neurological disorders in patients suffering from hypertension\",\"authors\":\"Sanjana Mishra, Prekshi Garg, Mala Trivedi, Prachi Srivastava\",\"doi\":\"10.1038/s41371-025-01027-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypertension is a prevalent disease that substantially elevates the risk of neurological disorders such as dementia, stroke and Parkinson’s disease. MicroRNAs (miRNAs) play a critical role in the regulation of gene expression related to brain function and disorders. Understanding the involvement of miRNAs in these conditions could provide new insights into potential therapeutic targets. The main objective of this study is to target and investigate microRNAs (miRNAs) associated with neurological disorders in patients suffering from hypertension. The genes involved in hypertension were identified from various databases including GeneCard, MalaCard, DisGeNet, OMIM & GEO2R. The key gene for hypertension was identified using a systems biology approach. Also, potent phytochemical for hypertension was determined by computer-aided drug-designing approach. Functional miRNAs were determined for the key target gene using miRNet analytics platform by hypergeometric tests. Further, the gene-miRNA interaction was determined and enrichment analysis was done. RPS27A was identified as a key target gene for hypertension. Naringenin showed effective molecular interaction with RPS27A with a binding energy score (−6.28). Further, a list of miRNAs which were targeting brain disorders was determined from miRNet. A gene-miRNA network was constructed using the PSRR tool for Parkinson’s Disease, Autism Spectrum Disorder, Acute Cerebral Infarction, ACTH-Secreting Pituitary Adenoma, & Ependymoma. Further, miRNA 21 & miRNA 16 were found to be associated with four of the neurological disorders. The study identifies specific miRNAs that may serve as potential biomarkers for brain disorders in hypertensive patients. Targeting these miRNAs could open new avenues for therapeutic strategies aimed at mitigating neurological damage in this patient population.\",\"PeriodicalId\":16070,\"journal\":{\"name\":\"Journal of Human Hypertension\",\"volume\":\"39 6\",\"pages\":\"432-441\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41371-025-01027-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Hypertension","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41371-025-01027-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Multiple system biology approaches reveals the role of the hsa-miR-21 in increasing risk of neurological disorders in patients suffering from hypertension
Hypertension is a prevalent disease that substantially elevates the risk of neurological disorders such as dementia, stroke and Parkinson’s disease. MicroRNAs (miRNAs) play a critical role in the regulation of gene expression related to brain function and disorders. Understanding the involvement of miRNAs in these conditions could provide new insights into potential therapeutic targets. The main objective of this study is to target and investigate microRNAs (miRNAs) associated with neurological disorders in patients suffering from hypertension. The genes involved in hypertension were identified from various databases including GeneCard, MalaCard, DisGeNet, OMIM & GEO2R. The key gene for hypertension was identified using a systems biology approach. Also, potent phytochemical for hypertension was determined by computer-aided drug-designing approach. Functional miRNAs were determined for the key target gene using miRNet analytics platform by hypergeometric tests. Further, the gene-miRNA interaction was determined and enrichment analysis was done. RPS27A was identified as a key target gene for hypertension. Naringenin showed effective molecular interaction with RPS27A with a binding energy score (−6.28). Further, a list of miRNAs which were targeting brain disorders was determined from miRNet. A gene-miRNA network was constructed using the PSRR tool for Parkinson’s Disease, Autism Spectrum Disorder, Acute Cerebral Infarction, ACTH-Secreting Pituitary Adenoma, & Ependymoma. Further, miRNA 21 & miRNA 16 were found to be associated with four of the neurological disorders. The study identifies specific miRNAs that may serve as potential biomarkers for brain disorders in hypertensive patients. Targeting these miRNAs could open new avenues for therapeutic strategies aimed at mitigating neurological damage in this patient population.
期刊介绍:
Journal of Human Hypertension is published monthly and is of interest to health care professionals who deal with hypertension (specialists, internists, primary care physicians) and public health workers. We believe that our patients benefit from robust scientific data that are based on well conducted clinical trials. We also believe that basic sciences are the foundations on which we build our knowledge of clinical conditions and their management. Towards this end, although we are primarily a clinical based journal, we also welcome suitable basic sciences studies that promote our understanding of human hypertension.
The journal aims to perform the dual role of increasing knowledge in the field of high blood pressure as well as improving the standard of care of patients. The editors will consider for publication all suitable papers dealing directly or indirectly with clinical aspects of hypertension, including but not limited to epidemiology, pathophysiology, therapeutics and basic sciences involving human subjects or tissues. We also consider papers from all specialties such as ophthalmology, cardiology, nephrology, obstetrics and stroke medicine that deal with the various aspects of hypertension and its complications.