乙二醇在钯银/镍电极上选择性电氧化的元素权衡。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-19 DOI:10.1002/cssc.202500724
Noë I Watson, Amelie Fehler, Marit Stoop, Bart van den Bosch, Gadi Rothenberg
{"title":"乙二醇在钯银/镍电极上选择性电氧化的元素权衡。","authors":"Noë I Watson, Amelie Fehler, Marit Stoop, Bart van den Bosch, Gadi Rothenberg","doi":"10.1002/cssc.202500724","DOIUrl":null,"url":null,"abstract":"<p><p>We study the synthesis and properties of PdAg electrodes coated on Ni foam and their application in the selective electro-oxidation of ethylene glycol to glycolate. This reaction is a route to glycolic acid, which is a key component of biodegradable packaging. Using a combination of cyclic voltammetry, EDX and XRD analysis, we find that a 3:1 Pd:Ag ratio gives optimal results. We show that the oxidation of ethylene glycol on palladium occurs between 0.3 and 1.2 V vs. RHE, and depends on the presence of a Pd(0) active site. Electrochemical Impedance Spectroscopy experiments show that the charge-transfer resistance (RCT) follows the same trend as EGOPd activity, with the 3:1 Pd:Ag electrode having the lowest RCT. Electrolysis with this electrode at 0.705 V vs. RHE, where Pd is reduced, results in glycolate production with no overoxidation to formate or oxalate. We then move to a flow setup under industrial conditions, and show that the Pd-Ni electrode yields >80% FE to glycolate for over 140 h. Long-term electrode deactivation can be overcome in this system by a periodic self-refresh cycle.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500724"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elemental trade-off in the selective Electrooxidation of Ethylene Glycol on Palladium-Silver/Nickel Electrodes.\",\"authors\":\"Noë I Watson, Amelie Fehler, Marit Stoop, Bart van den Bosch, Gadi Rothenberg\",\"doi\":\"10.1002/cssc.202500724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the synthesis and properties of PdAg electrodes coated on Ni foam and their application in the selective electro-oxidation of ethylene glycol to glycolate. This reaction is a route to glycolic acid, which is a key component of biodegradable packaging. Using a combination of cyclic voltammetry, EDX and XRD analysis, we find that a 3:1 Pd:Ag ratio gives optimal results. We show that the oxidation of ethylene glycol on palladium occurs between 0.3 and 1.2 V vs. RHE, and depends on the presence of a Pd(0) active site. Electrochemical Impedance Spectroscopy experiments show that the charge-transfer resistance (RCT) follows the same trend as EGOPd activity, with the 3:1 Pd:Ag electrode having the lowest RCT. Electrolysis with this electrode at 0.705 V vs. RHE, where Pd is reduced, results in glycolate production with no overoxidation to formate or oxalate. We then move to a flow setup under industrial conditions, and show that the Pd-Ni electrode yields >80% FE to glycolate for over 140 h. Long-term electrode deactivation can be overcome in this system by a periodic self-refresh cycle.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500724\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500724\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500724","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了泡沫镍包覆PdAg电极的合成、性能及其在乙二醇选择性电氧化制乙醇酸盐中的应用。这个反应是产生乙醇酸的途径,乙醇酸是可生物降解包装的关键成分。结合循环伏安法、EDX和XRD分析,我们发现Pd:Ag比例为3:1时效果最佳。我们发现乙二醇在钯上的氧化发生在相对于RHE的0.3和1.2 V之间,并且取决于Pd(0)活性位点的存在。电化学阻抗谱实验表明,电极的电荷转移电阻(RCT)与EGOPd活性具有相同的变化趋势,其中3:1 Pd:Ag电极的RCT最低。使用该电极在0.705 V与RHE下电解,其中Pd减少,导致乙醇酸盐生产,没有过度氧化成甲酸或草酸盐。然后,我们移动到工业条件下的流动设置,并表明Pd-Ni电极在140小时以上的时间内产生bbb80 %的FE到乙醇酸盐。在该系统中,通过周期性的自我刷新循环可以克服长期的电极失活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elemental trade-off in the selective Electrooxidation of Ethylene Glycol on Palladium-Silver/Nickel Electrodes.

We study the synthesis and properties of PdAg electrodes coated on Ni foam and their application in the selective electro-oxidation of ethylene glycol to glycolate. This reaction is a route to glycolic acid, which is a key component of biodegradable packaging. Using a combination of cyclic voltammetry, EDX and XRD analysis, we find that a 3:1 Pd:Ag ratio gives optimal results. We show that the oxidation of ethylene glycol on palladium occurs between 0.3 and 1.2 V vs. RHE, and depends on the presence of a Pd(0) active site. Electrochemical Impedance Spectroscopy experiments show that the charge-transfer resistance (RCT) follows the same trend as EGOPd activity, with the 3:1 Pd:Ag electrode having the lowest RCT. Electrolysis with this electrode at 0.705 V vs. RHE, where Pd is reduced, results in glycolate production with no overoxidation to formate or oxalate. We then move to a flow setup under industrial conditions, and show that the Pd-Ni electrode yields >80% FE to glycolate for over 140 h. Long-term electrode deactivation can be overcome in this system by a periodic self-refresh cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信