利用有效的同时基于元启发式的特征选择和超参数调优改进人类布鲁氏菌病的易感性映射。

IF 2.1 3区 医学 Q2 PARASITOLOGY
Iman Zandi , Ali Jafari , Ali Asghar Alesheikh
{"title":"利用有效的同时基于元启发式的特征选择和超参数调优改进人类布鲁氏菌病的易感性映射。","authors":"Iman Zandi ,&nbsp;Ali Jafari ,&nbsp;Ali Asghar Alesheikh","doi":"10.1016/j.actatropica.2025.107657","DOIUrl":null,"url":null,"abstract":"<div><div>Human Brucellosis, a neglected zoonotic disease, affects 1.6 to 2.1 million people globally each year. In Iran, it has become a significant health concern, with an average annual incidence rate of 19.91 cases per 100,000 people. This study aims to create a reliable Human Brucellosis Susceptibility Map (HBSM) for Mazandaran Province using a hybrid machine learning approach that enhances performance through metaheuristic algorithms for feature and hyperparameter optimization. A transformation function is integrated into these algorithms to reduce computational and time complexities while simultaneously executing feature selection and hyperparameter tuning. Additionally, a two-phase mutation operator is employed to improve the performance of feature selection. The results indicate that the hybrid model of Support Vector Regression-Transformation Mutation Grey Wolf Optimizer (SVR-TMGWO) outperformed other models, achieving RMSE=0.7723, MAE=0.614, MdAE=0.473, and <em>R</em> = 0.536. The predicted HBSM for 2018 identified 68 rural districts in Mazandaran Province as being in the High and Very High susceptibility classes. The susceptibility map can help decision-makers more effectively prevent, control, and manage Human Brucellosis in Mazandaran Province.</div></div>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":"267 ","pages":"Article 107657"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving human brucellosis susceptibility mapping using effective and simultaneously metaheuristic-based feature selection and hyperparameter tuning\",\"authors\":\"Iman Zandi ,&nbsp;Ali Jafari ,&nbsp;Ali Asghar Alesheikh\",\"doi\":\"10.1016/j.actatropica.2025.107657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human Brucellosis, a neglected zoonotic disease, affects 1.6 to 2.1 million people globally each year. In Iran, it has become a significant health concern, with an average annual incidence rate of 19.91 cases per 100,000 people. This study aims to create a reliable Human Brucellosis Susceptibility Map (HBSM) for Mazandaran Province using a hybrid machine learning approach that enhances performance through metaheuristic algorithms for feature and hyperparameter optimization. A transformation function is integrated into these algorithms to reduce computational and time complexities while simultaneously executing feature selection and hyperparameter tuning. Additionally, a two-phase mutation operator is employed to improve the performance of feature selection. The results indicate that the hybrid model of Support Vector Regression-Transformation Mutation Grey Wolf Optimizer (SVR-TMGWO) outperformed other models, achieving RMSE=0.7723, MAE=0.614, MdAE=0.473, and <em>R</em> = 0.536. The predicted HBSM for 2018 identified 68 rural districts in Mazandaran Province as being in the High and Very High susceptibility classes. The susceptibility map can help decision-makers more effectively prevent, control, and manage Human Brucellosis in Mazandaran Province.</div></div>\",\"PeriodicalId\":7240,\"journal\":{\"name\":\"Acta tropica\",\"volume\":\"267 \",\"pages\":\"Article 107657\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta tropica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001706X25001330\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001706X25001330","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类布鲁氏菌病是一种被忽视的人畜共患疾病,每年在全球影响160万至210万人。在伊朗,它已成为一个严重的健康问题,年平均发病率为每10万人19.91例。本研究旨在使用混合机器学习方法为Mazandaran省创建可靠的人类布鲁氏菌病易感性地图(HBSM),该方法通过特征和超参数优化的元启发式算法提高性能。在这些算法中集成了转换函数,以减少计算和时间复杂性,同时执行特征选择和超参数调优。此外,为了提高特征选择的性能,采用了两相变异算子。结果表明,基于支持向量回归-变换突变灰狼优化器(SVR-TMGWO)的混合模型优于其他模型,RMSE=0.7723, MAE=0.614, MdAE=0.473, R=0.536。预测的2018年HBSM将马赞达兰省的68个农村地区确定为高和非常高易感等级。易感分布图可帮助马赞达兰省决策者更有效地预防、控制和管理人布鲁氏菌病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving human brucellosis susceptibility mapping using effective and simultaneously metaheuristic-based feature selection and hyperparameter tuning
Human Brucellosis, a neglected zoonotic disease, affects 1.6 to 2.1 million people globally each year. In Iran, it has become a significant health concern, with an average annual incidence rate of 19.91 cases per 100,000 people. This study aims to create a reliable Human Brucellosis Susceptibility Map (HBSM) for Mazandaran Province using a hybrid machine learning approach that enhances performance through metaheuristic algorithms for feature and hyperparameter optimization. A transformation function is integrated into these algorithms to reduce computational and time complexities while simultaneously executing feature selection and hyperparameter tuning. Additionally, a two-phase mutation operator is employed to improve the performance of feature selection. The results indicate that the hybrid model of Support Vector Regression-Transformation Mutation Grey Wolf Optimizer (SVR-TMGWO) outperformed other models, achieving RMSE=0.7723, MAE=0.614, MdAE=0.473, and R = 0.536. The predicted HBSM for 2018 identified 68 rural districts in Mazandaran Province as being in the High and Very High susceptibility classes. The susceptibility map can help decision-makers more effectively prevent, control, and manage Human Brucellosis in Mazandaran Province.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信