手性诱导的自旋选择性效应使有机光电化学晶体管具有对映体特异性。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-19 DOI:10.1021/acsnano.5c06982
Jian-Hong Zhu, Xinzhe Yang, Yulin Zheng, Shujia Wang, Zhen-Kun He, Zhida Gao, Yan-Yan Song
{"title":"手性诱导的自旋选择性效应使有机光电化学晶体管具有对映体特异性。","authors":"Jian-Hong Zhu, Xinzhe Yang, Yulin Zheng, Shujia Wang, Zhen-Kun He, Zhida Gao, Yan-Yan Song","doi":"10.1021/acsnano.5c06982","DOIUrl":null,"url":null,"abstract":"<p><p>Chirality, as an intrinsic feature of the living world, is associated with many significant biological processes. Although the chiral-induced spin selectivity (CISS) effects have been recognized and applied to provide spin control over chemical reactions, their implementation in the organic electrochemical transistor (OECT) remains a largely unexplored area. Herein, the OECT technology is combined with a photovoltaic gate electrode and the CISS effect, establishing a chiral organic photoelectrochemical transistor (OPECT) for enantiomer identification. The chiral Sn(II)-based metal-organic framework (SnMOF)/SnO<sub>2</sub> hybrid, serving as a spin filter to induce CISS properties, is coated on a TiO<sub>2</sub> nanotube array-based photosensitive gate. Using cystine enantiomers as proof-of-principle, a target recognition-induced electron donor (l-/d-cysteine) generation was further proposed. The CISS effect enables a more efficient transfer of spin-polarized electrons between the L-target and L-gate (or between the D-target and D-gate), inducing a greater channel current (<i>I</i><sub>D</sub>) variation. The comprehensive analysis of the <i>I</i><sub>D</sub> responses in the two chiral OPECT sensors further enables accurate and reliable determination of the concentration and composition of enantiomers in unknown mixtures. This study provides a straightforward methodology to apply the CISS effect for determining chiral targets in complex samples.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enantiospecificity in Organic Photoelectrochemical Transistors Enabled by Chirality-Induced Spin Selectivity Effects.\",\"authors\":\"Jian-Hong Zhu, Xinzhe Yang, Yulin Zheng, Shujia Wang, Zhen-Kun He, Zhida Gao, Yan-Yan Song\",\"doi\":\"10.1021/acsnano.5c06982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chirality, as an intrinsic feature of the living world, is associated with many significant biological processes. Although the chiral-induced spin selectivity (CISS) effects have been recognized and applied to provide spin control over chemical reactions, their implementation in the organic electrochemical transistor (OECT) remains a largely unexplored area. Herein, the OECT technology is combined with a photovoltaic gate electrode and the CISS effect, establishing a chiral organic photoelectrochemical transistor (OPECT) for enantiomer identification. The chiral Sn(II)-based metal-organic framework (SnMOF)/SnO<sub>2</sub> hybrid, serving as a spin filter to induce CISS properties, is coated on a TiO<sub>2</sub> nanotube array-based photosensitive gate. Using cystine enantiomers as proof-of-principle, a target recognition-induced electron donor (l-/d-cysteine) generation was further proposed. The CISS effect enables a more efficient transfer of spin-polarized electrons between the L-target and L-gate (or between the D-target and D-gate), inducing a greater channel current (<i>I</i><sub>D</sub>) variation. The comprehensive analysis of the <i>I</i><sub>D</sub> responses in the two chiral OPECT sensors further enables accurate and reliable determination of the concentration and composition of enantiomers in unknown mixtures. This study provides a straightforward methodology to apply the CISS effect for determining chiral targets in complex samples.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c06982\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c06982","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

手性作为生物世界的内在特征,与许多重要的生物过程有关。虽然手性诱导的自旋选择性(CISS)效应已经被认可并应用于化学反应的自旋控制,但它们在有机电化学晶体管(OECT)中的应用仍然是一个很大的未开发领域。本文将OECT技术与光伏栅电极和CISS效应相结合,建立了手性有机光电电化学晶体管(OPECT),用于对映体的识别。将手性Sn(II)基金属有机骨架(SnMOF)/SnO2杂化物包覆在TiO2纳米管阵列光敏栅极上,作为自旋滤波器诱导CISS性能。利用半胱氨酸对映体作为原理证明,进一步提出了目标识别诱导电子供体(l-/d-半胱氨酸)的产生。CISS效应使得自旋极化电子在l -靶和l -栅极之间(或d -靶和d -栅极之间)更有效地转移,诱导更大的通道电流(ID)变化。对两个手性OPECT传感器的ID响应的综合分析进一步能够准确可靠地确定未知混合物中对映体的浓度和组成。本研究提供了一种直接的方法来应用CISS效应来确定复杂样品中的手性目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enantiospecificity in Organic Photoelectrochemical Transistors Enabled by Chirality-Induced Spin Selectivity Effects.

Enantiospecificity in Organic Photoelectrochemical Transistors Enabled by Chirality-Induced Spin Selectivity Effects.

Chirality, as an intrinsic feature of the living world, is associated with many significant biological processes. Although the chiral-induced spin selectivity (CISS) effects have been recognized and applied to provide spin control over chemical reactions, their implementation in the organic electrochemical transistor (OECT) remains a largely unexplored area. Herein, the OECT technology is combined with a photovoltaic gate electrode and the CISS effect, establishing a chiral organic photoelectrochemical transistor (OPECT) for enantiomer identification. The chiral Sn(II)-based metal-organic framework (SnMOF)/SnO2 hybrid, serving as a spin filter to induce CISS properties, is coated on a TiO2 nanotube array-based photosensitive gate. Using cystine enantiomers as proof-of-principle, a target recognition-induced electron donor (l-/d-cysteine) generation was further proposed. The CISS effect enables a more efficient transfer of spin-polarized electrons between the L-target and L-gate (or between the D-target and D-gate), inducing a greater channel current (ID) variation. The comprehensive analysis of the ID responses in the two chiral OPECT sensors further enables accurate and reliable determination of the concentration and composition of enantiomers in unknown mixtures. This study provides a straightforward methodology to apply the CISS effect for determining chiral targets in complex samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信