基于有限元插值神经网络的智慧城市物联网通信系统性能预测

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Sathishbabu, R. Dhanalakshmi, R. Bharathiraja, K. Thirunavukkarasu
{"title":"基于有限元插值神经网络的智慧城市物联网通信系统性能预测","authors":"S. Sathishbabu,&nbsp;R. Dhanalakshmi,&nbsp;R. Bharathiraja,&nbsp;K. Thirunavukkarasu","doi":"10.1002/dac.70101","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Internet of Things (IoT) is an essential part of Information and Communications Technology (ICT) for sustainable smart cities because of its capacity to assist sustainability across multiple disciplines. To attain the required quality of IoT communication systems and to enable sustainable progress in smart cities regarding IoT communication systems, it is necessary to avoid fault through constant and dynamic application of network behavior. In this research work, predicting the performance of IoT communication systems using Finite Element Interpolated Neural Network in smart cities (IoT-CS-FEINN-SC) is proposed. Here, the input data is gathered from IoT devices that include various kinds of sensors like visibility, humidity, temperature, pressure, and wind speed. Signed Cumulative Distribution Transform (SCDT) is employed to extract Received Signal Strength (RSS) features as minimum, maximum, and mean. Afterwards, the extracted features are fed to FEINN for predicting the IoT communication system performance in smart cities. The Secretary Bird Optimization Algorithm (SBOA) is proposed to enhance the weight parameter of FEINN method that predicts the performance of IoT communication systems precisely. The IoT-CS-FEINN-SC technique achieves 20.36%, 28.42%, and 15.27% better accuracy analyzed with existing techniques: Cloud-assisted IoT intelligent transportation scheme and traffic control scheme in smart city (IoT-TCS-SC), Optimized RNN-dependent performance prediction of IoT and WSN-oriented smart city application utilizing improved honey badger algorithm (RNN-IoT-WSN), and Smart cities: a role of IoT and ML in realizing data-centric smart environs (IoT-ANN-DSE), respectively.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Performance of Internet of Things Communication Systems Using Finite Element Interpolated Neural Network in Smart Cities\",\"authors\":\"S. Sathishbabu,&nbsp;R. Dhanalakshmi,&nbsp;R. Bharathiraja,&nbsp;K. Thirunavukkarasu\",\"doi\":\"10.1002/dac.70101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Internet of Things (IoT) is an essential part of Information and Communications Technology (ICT) for sustainable smart cities because of its capacity to assist sustainability across multiple disciplines. To attain the required quality of IoT communication systems and to enable sustainable progress in smart cities regarding IoT communication systems, it is necessary to avoid fault through constant and dynamic application of network behavior. In this research work, predicting the performance of IoT communication systems using Finite Element Interpolated Neural Network in smart cities (IoT-CS-FEINN-SC) is proposed. Here, the input data is gathered from IoT devices that include various kinds of sensors like visibility, humidity, temperature, pressure, and wind speed. Signed Cumulative Distribution Transform (SCDT) is employed to extract Received Signal Strength (RSS) features as minimum, maximum, and mean. Afterwards, the extracted features are fed to FEINN for predicting the IoT communication system performance in smart cities. The Secretary Bird Optimization Algorithm (SBOA) is proposed to enhance the weight parameter of FEINN method that predicts the performance of IoT communication systems precisely. The IoT-CS-FEINN-SC technique achieves 20.36%, 28.42%, and 15.27% better accuracy analyzed with existing techniques: Cloud-assisted IoT intelligent transportation scheme and traffic control scheme in smart city (IoT-TCS-SC), Optimized RNN-dependent performance prediction of IoT and WSN-oriented smart city application utilizing improved honey badger algorithm (RNN-IoT-WSN), and Smart cities: a role of IoT and ML in realizing data-centric smart environs (IoT-ANN-DSE), respectively.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.70101\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.70101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)是可持续智慧城市的信息和通信技术(ICT)的重要组成部分,因为它能够帮助跨多个学科的可持续发展。为了达到物联网通信系统所要求的质量,实现物联网通信系统在智慧城市的可持续发展,需要通过不断动态地应用网络行为来避免故障。在本研究工作中,提出了使用智能城市有限元插值神经网络(IoT- cs - fein - sc)预测物联网通信系统性能的方法。在这里,输入数据是从物联网设备收集的,包括各种传感器,如能见度、湿度、温度、压力和风速。采用签名累积分布变换(SCDT)提取接收信号强度(RSS)特征的最小值、最大值和平均值。然后,将提取的特征馈送到FEINN,用于预测智慧城市物联网通信系统的性能。为了提高FEINN方法的权重参数,精确预测物联网通信系统的性能,提出了秘书鸟优化算法(SBOA)。与现有技术(云辅助物联网智能交通方案和智慧城市交通控制方案(IoT- tcs - sc)、利用改进蜜獾算法(RNN-IoT-WSN)优化依赖于rnn的物联网和面向wsn的智慧城市应用性能预测(RNN-IoT-WSN)、智慧城市:物联网和机器学习在实现以数据为中心的智能环境中的作用(IoT- ann - dse)相比,IoT- cs - fein - sc技术的准确率分别提高了20.36%、28.42%和15.27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Performance of Internet of Things Communication Systems Using Finite Element Interpolated Neural Network in Smart Cities

The Internet of Things (IoT) is an essential part of Information and Communications Technology (ICT) for sustainable smart cities because of its capacity to assist sustainability across multiple disciplines. To attain the required quality of IoT communication systems and to enable sustainable progress in smart cities regarding IoT communication systems, it is necessary to avoid fault through constant and dynamic application of network behavior. In this research work, predicting the performance of IoT communication systems using Finite Element Interpolated Neural Network in smart cities (IoT-CS-FEINN-SC) is proposed. Here, the input data is gathered from IoT devices that include various kinds of sensors like visibility, humidity, temperature, pressure, and wind speed. Signed Cumulative Distribution Transform (SCDT) is employed to extract Received Signal Strength (RSS) features as minimum, maximum, and mean. Afterwards, the extracted features are fed to FEINN for predicting the IoT communication system performance in smart cities. The Secretary Bird Optimization Algorithm (SBOA) is proposed to enhance the weight parameter of FEINN method that predicts the performance of IoT communication systems precisely. The IoT-CS-FEINN-SC technique achieves 20.36%, 28.42%, and 15.27% better accuracy analyzed with existing techniques: Cloud-assisted IoT intelligent transportation scheme and traffic control scheme in smart city (IoT-TCS-SC), Optimized RNN-dependent performance prediction of IoT and WSN-oriented smart city application utilizing improved honey badger algorithm (RNN-IoT-WSN), and Smart cities: a role of IoT and ML in realizing data-centric smart environs (IoT-ANN-DSE), respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信