高性能锂离子电池负极用破碎MXene (c-Ti3C2Tx)首次电沉积硅

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY
Rehman Butt, Aleena Gigi, François Rabuel, Mathieu Morcrette, Jeremy Mallet
{"title":"高性能锂离子电池负极用破碎MXene (c-Ti3C2Tx)首次电沉积硅","authors":"Rehman Butt,&nbsp;Aleena Gigi,&nbsp;François Rabuel,&nbsp;Mathieu Morcrette,&nbsp;Jeremy Mallet","doi":"10.1002/batt.202400633","DOIUrl":null,"url":null,"abstract":"<p>The demand for high energy density Li-ion batteries requires electrode materials with high capacity and long cycling stability. Silicon is among the most promising negative electrode materials due to its high theoretical capacity, abundant resources, and low working potential. However, its poor conductivity and significant volume expansion during cycling limit its practical application. To overcome these issues, this study develops a two-step synthesis method for a nanostructured composite based on silicon as the active material. First, a crumbled Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) structure formed through electrostatic interaction between a Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> suspension and 1 M KOH. Then, an amorphous silicon layer is electrodeposited onto the c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> flakes in a room-temperature ionic liquid, creating the Si/c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> composite for the negative electrode of Li-ion batteries. The c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> structure enhances conductivity, provides mechanical stability to accommodate silicon's expansion, and offers nanostructured porosity for lithium-ion diffusion. The composite material demonstrates exceptional cycling stability, achieving a capacity of 1300 mAh g<sup>−1</sup> at C/5 with 91 % capacity retention after 100 cycles.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400633","citationCount":"0","resultStr":"{\"title\":\"First Electrodeposition of Silicon on Crumbled MXene (c-Ti3C2Tx) for High-Performance Lithium-Ion Battery Negative Electrode\",\"authors\":\"Rehman Butt,&nbsp;Aleena Gigi,&nbsp;François Rabuel,&nbsp;Mathieu Morcrette,&nbsp;Jeremy Mallet\",\"doi\":\"10.1002/batt.202400633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The demand for high energy density Li-ion batteries requires electrode materials with high capacity and long cycling stability. Silicon is among the most promising negative electrode materials due to its high theoretical capacity, abundant resources, and low working potential. However, its poor conductivity and significant volume expansion during cycling limit its practical application. To overcome these issues, this study develops a two-step synthesis method for a nanostructured composite based on silicon as the active material. First, a crumbled Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) structure formed through electrostatic interaction between a Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> suspension and 1 M KOH. Then, an amorphous silicon layer is electrodeposited onto the c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> flakes in a room-temperature ionic liquid, creating the Si/c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> composite for the negative electrode of Li-ion batteries. The c-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> structure enhances conductivity, provides mechanical stability to accommodate silicon's expansion, and offers nanostructured porosity for lithium-ion diffusion. The composite material demonstrates exceptional cycling stability, achieving a capacity of 1300 mAh g<sup>−1</sup> at C/5 with 91 % capacity retention after 100 cycles.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400633\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400633\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400633","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

对高能量密度锂离子电池的需求要求电极材料具有高容量和长循环稳定性。硅具有理论容量大、资源丰富、工作电位低等优点,是极具应用前景的负极材料之一。然而,其导电性差和循环过程中显著的体积膨胀限制了其实际应用。为了克服这些问题,本研究开发了一种以硅为活性材料的纳米复合材料的两步法合成方法。首先,通过Ti3C2Tx悬浮液与1 M KOH的静电相互作用,形成破碎的Ti3C2Tx (c-Ti3C2Tx)结构。然后,在室温离子液体中,将非晶硅层电沉积在c-Ti3C2Tx薄片上,形成用于锂离子电池负极的Si/c-Ti3C2Tx复合材料。c-Ti3C2Tx结构提高了导电性,提供了机械稳定性以适应硅的膨胀,并为锂离子扩散提供了纳米结构孔隙。该复合材料表现出优异的循环稳定性,在C/5下达到1300 mAh g−1的容量,100次循环后容量保持91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First Electrodeposition of Silicon on Crumbled MXene (c-Ti3C2Tx) for High-Performance Lithium-Ion Battery Negative Electrode

First Electrodeposition of Silicon on Crumbled MXene (c-Ti3C2Tx) for High-Performance Lithium-Ion Battery Negative Electrode

The demand for high energy density Li-ion batteries requires electrode materials with high capacity and long cycling stability. Silicon is among the most promising negative electrode materials due to its high theoretical capacity, abundant resources, and low working potential. However, its poor conductivity and significant volume expansion during cycling limit its practical application. To overcome these issues, this study develops a two-step synthesis method for a nanostructured composite based on silicon as the active material. First, a crumbled Ti3C2Tx (c-Ti3C2Tx) structure formed through electrostatic interaction between a Ti3C2Tx suspension and 1 M KOH. Then, an amorphous silicon layer is electrodeposited onto the c-Ti3C2Tx flakes in a room-temperature ionic liquid, creating the Si/c-Ti3C2Tx composite for the negative electrode of Li-ion batteries. The c-Ti3C2Tx structure enhances conductivity, provides mechanical stability to accommodate silicon's expansion, and offers nanostructured porosity for lithium-ion diffusion. The composite material demonstrates exceptional cycling stability, achieving a capacity of 1300 mAh g−1 at C/5 with 91 % capacity retention after 100 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信