Al掺杂增强富锂正极材料电化学性能

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Busra Cetin, Tugce Gul Idinak, Neslihan Yuca
{"title":"Al掺杂增强富锂正极材料电化学性能","authors":"Busra Cetin,&nbsp;Tugce Gul Idinak,&nbsp;Neslihan Yuca","doi":"10.1002/batt.202400652","DOIUrl":null,"url":null,"abstract":"<p>Li-rich oxides are the most promising of the high-voltage cathode materials with their high specific capacity. However, Li-rich cathode materials suffer from structural instability, voltage degradation, and capacity fading upon cycling. Al-doping can improve electrochemical performance by stabilizing the structure and suppressing the phase transitions for Li-rich cathodes. In this paper, we investigate the effect of different amounts of Al with the general formula Li<sub>1.2</sub>Mn<sub>0.54-x</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Al<sub>x</sub>O<sub>2</sub> and Li<sub>1.2-x</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Al<sub>x</sub>O<sub>2</sub> (x=0.02, 0.05, 0.1) cathode materials. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared to pristine Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub>. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared. The impact of substitution of Mn and Li by Al on the structural and morphological properties has been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The charge and discharge tests show that doping with Al substitution leads to improved electrochemical performance, enhancing both the cycling stability and rate capability of the Li-rich cathode materials. Along with the improved specific capacities, these materials demonstrate superior rate performance, particularly for the composition with the lowest Al content.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 5","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400652","citationCount":"0","resultStr":"{\"title\":\"Enhanced Electrochemical Performance of Li-rich Cathode Materials by Al Doping\",\"authors\":\"Busra Cetin,&nbsp;Tugce Gul Idinak,&nbsp;Neslihan Yuca\",\"doi\":\"10.1002/batt.202400652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Li-rich oxides are the most promising of the high-voltage cathode materials with their high specific capacity. However, Li-rich cathode materials suffer from structural instability, voltage degradation, and capacity fading upon cycling. Al-doping can improve electrochemical performance by stabilizing the structure and suppressing the phase transitions for Li-rich cathodes. In this paper, we investigate the effect of different amounts of Al with the general formula Li<sub>1.2</sub>Mn<sub>0.54-x</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Al<sub>x</sub>O<sub>2</sub> and Li<sub>1.2-x</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Al<sub>x</sub>O<sub>2</sub> (x=0.02, 0.05, 0.1) cathode materials. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared to pristine Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub>. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared. The impact of substitution of Mn and Li by Al on the structural and morphological properties has been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The charge and discharge tests show that doping with Al substitution leads to improved electrochemical performance, enhancing both the cycling stability and rate capability of the Li-rich cathode materials. Along with the improved specific capacities, these materials demonstrate superior rate performance, particularly for the composition with the lowest Al content.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400652\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400652\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400652","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

富锂氧化物具有较高的比容量,是目前最有前途的高压正极材料。然而,富锂阴极材料在循环过程中存在结构不稳定、电压退化和容量衰减等问题。al掺杂可以稳定富锂阴极的结构,抑制其相变,从而提高其电化学性能。本文采用通式Li1.2Mn0.54-xNi0.13Co0.13AlxO2和Li1.2-xMn0.54Ni0.13Co0.13AlxO2 (x=0.02, 0.05, 0.1)制备正极材料,研究了不同Al含量对正极材料性能的影响。用Al取代Li和Mn元素,并将其电化学性能与原始的Li1.2Mn0.54Ni0.13Co0.13O2进行比较。用Al代替Li和Mn元素,比较了其电化学性能。利用扫描电子显微镜(SEM)和x射线衍射仪(XRD)研究了Al取代Mn和Li对结构和形态性能的影响。充放电实验表明,掺杂Al取代后,富锂正极材料的电化学性能得到改善,循环稳定性和倍率性能均有所提高。随着比容量的提高,这些材料表现出优越的速率性能,特别是对于Al含量最低的组合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Electrochemical Performance of Li-rich Cathode Materials by Al Doping

Li-rich oxides are the most promising of the high-voltage cathode materials with their high specific capacity. However, Li-rich cathode materials suffer from structural instability, voltage degradation, and capacity fading upon cycling. Al-doping can improve electrochemical performance by stabilizing the structure and suppressing the phase transitions for Li-rich cathodes. In this paper, we investigate the effect of different amounts of Al with the general formula Li1.2Mn0.54-xNi0.13Co0.13AlxO2 and Li1.2-xMn0.54Ni0.13Co0.13AlxO2 (x=0.02, 0.05, 0.1) cathode materials. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared to pristine Li1.2Mn0.54Ni0.13Co0.13O2. The Li and Mn elements were replaced by Al, and the electrochemical performance was compared. The impact of substitution of Mn and Li by Al on the structural and morphological properties has been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The charge and discharge tests show that doping with Al substitution leads to improved electrochemical performance, enhancing both the cycling stability and rate capability of the Li-rich cathode materials. Along with the improved specific capacities, these materials demonstrate superior rate performance, particularly for the composition with the lowest Al content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信