{"title":"锌离子混合超级电容器的电解质添加剂-组装互连分子-锌阳极界面","authors":"Yang Li, Xu Li, Xinya Peng, Xinyu Yang, Feiyu Kang, Liubing Dong","doi":"10.1007/s40820-025-01794-1","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc-ion hybrid supercapacitors (ZHSs) are promising energy storage systems integrating high energy density and high-power density, whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes. Herein, we report an electrolyte additive-assembled interconnecting molecules–zinc anode interface, realizing highly stable and fast-kinetics zinc anodes for ZHSs. The sulfobutyl groups-grafted β-cyclodextrin (SC) supramolecules as a trace additive in ZnSO<sub>4</sub> electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule. The interconnecting molecules–zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn<sup>2+</sup> transference number and homogenize Zn<sup>2+</sup> deposition sites, and meanwhile, it accelerates the desolvation of hydrated Zn<sup>2+</sup> to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface, making zinc anodes present superior reversibility with 99.7% Coulombic efficiency, ~ 30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities. ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved. This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01794-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrolyte Additive-Assembled Interconnecting Molecules–Zinc Anode Interface for Zinc-Ion Hybrid Supercapacitors\",\"authors\":\"Yang Li, Xu Li, Xinya Peng, Xinyu Yang, Feiyu Kang, Liubing Dong\",\"doi\":\"10.1007/s40820-025-01794-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc-ion hybrid supercapacitors (ZHSs) are promising energy storage systems integrating high energy density and high-power density, whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes. Herein, we report an electrolyte additive-assembled interconnecting molecules–zinc anode interface, realizing highly stable and fast-kinetics zinc anodes for ZHSs. The sulfobutyl groups-grafted β-cyclodextrin (SC) supramolecules as a trace additive in ZnSO<sub>4</sub> electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule. The interconnecting molecules–zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn<sup>2+</sup> transference number and homogenize Zn<sup>2+</sup> deposition sites, and meanwhile, it accelerates the desolvation of hydrated Zn<sup>2+</sup> to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface, making zinc anodes present superior reversibility with 99.7% Coulombic efficiency, ~ 30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities. ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved. This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01794-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01794-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01794-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Electrolyte Additive-Assembled Interconnecting Molecules–Zinc Anode Interface for Zinc-Ion Hybrid Supercapacitors
Zinc-ion hybrid supercapacitors (ZHSs) are promising energy storage systems integrating high energy density and high-power density, whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes. Herein, we report an electrolyte additive-assembled interconnecting molecules–zinc anode interface, realizing highly stable and fast-kinetics zinc anodes for ZHSs. The sulfobutyl groups-grafted β-cyclodextrin (SC) supramolecules as a trace additive in ZnSO4 electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule. The interconnecting molecules–zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn2+ transference number and homogenize Zn2+ deposition sites, and meanwhile, it accelerates the desolvation of hydrated Zn2+ to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface, making zinc anodes present superior reversibility with 99.7% Coulombic efficiency, ~ 30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities. ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved. This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.