通过锌掺杂调整尖晶石镍铁酸体的多铁性

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
O. Rosales-González, A. M. Bolarín-Miró, F. Pedro-García, C. A. Cortes-Escobedo, A. Barba-Pingarrón, F. Sánchez-De Jesús
{"title":"通过锌掺杂调整尖晶石镍铁酸体的多铁性","authors":"O. Rosales-González,&nbsp;A. M. Bolarín-Miró,&nbsp;F. Pedro-García,&nbsp;C. A. Cortes-Escobedo,&nbsp;A. Barba-Pingarrón,&nbsp;F. Sánchez-De Jesús","doi":"10.1007/s10854-025-14916-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a systematic investigation of the effects of the crystal structure and cation distribution on the multiferroic properties of the zinc-doped ferrite Ni<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (0 ≤ x ≤ 1, Δx = 0.1) synthesized via high–energy ball milling followed by heat treatment. X-ray diffraction (XRD) analysis confirmed the successful synthesis of cubic spinel ferrite across all the studied compositions, whereas structural changes, such as lattice size, porosity and crystallite size, exhibited compositional dependence. Scanning electron microscopy (SEM) of the pellet surfaces revealed the dependence of the grain size distribution and porosity on the zinc content. Raman spectroscopy analysis allows the determination of the distribution of cations as a function of the Zn content, revealing the change from an inverse to a mixed spinel structure. X-ray photoelectron spectroscopy (XPS) allows the determination of the cations of Ni<sup>2+</sup>, Ni<sup>3+</sup>, Fe<sup>2+</sup> and Fe<sup>3+</sup> distributed in tetrahedral and octahedral sites, resulting in new magnetic and dielectric interactions in the samples. Magnetic hysteresis loops confirmed the ferromagnetic ordering of the synthesized ferrites, with saturation magnetization values ranging from 40 to 76 emu/g for 0 to 0.5 mol of Zn, respectively. The observed increases in relative permittivity and conductivity with increasing zinc content are attributed to the redistribution of Fe<sup>3+</sup> ions within the crystal lattice, which is modulated by the Zn doping level. These findings confirm that bulk zinc-doped nickel ferrites synthesized by high–energy ball milling exhibit improved ferromagnetic and dielectric properties, suggesting potential for expanded technological applications.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 14","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the multiferroic properties of spinel nickel ferrite via zinc doping\",\"authors\":\"O. Rosales-González,&nbsp;A. M. Bolarín-Miró,&nbsp;F. Pedro-García,&nbsp;C. A. Cortes-Escobedo,&nbsp;A. Barba-Pingarrón,&nbsp;F. Sánchez-De Jesús\",\"doi\":\"10.1007/s10854-025-14916-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a systematic investigation of the effects of the crystal structure and cation distribution on the multiferroic properties of the zinc-doped ferrite Ni<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (0 ≤ x ≤ 1, Δx = 0.1) synthesized via high–energy ball milling followed by heat treatment. X-ray diffraction (XRD) analysis confirmed the successful synthesis of cubic spinel ferrite across all the studied compositions, whereas structural changes, such as lattice size, porosity and crystallite size, exhibited compositional dependence. Scanning electron microscopy (SEM) of the pellet surfaces revealed the dependence of the grain size distribution and porosity on the zinc content. Raman spectroscopy analysis allows the determination of the distribution of cations as a function of the Zn content, revealing the change from an inverse to a mixed spinel structure. X-ray photoelectron spectroscopy (XPS) allows the determination of the cations of Ni<sup>2+</sup>, Ni<sup>3+</sup>, Fe<sup>2+</sup> and Fe<sup>3+</sup> distributed in tetrahedral and octahedral sites, resulting in new magnetic and dielectric interactions in the samples. Magnetic hysteresis loops confirmed the ferromagnetic ordering of the synthesized ferrites, with saturation magnetization values ranging from 40 to 76 emu/g for 0 to 0.5 mol of Zn, respectively. The observed increases in relative permittivity and conductivity with increasing zinc content are attributed to the redistribution of Fe<sup>3+</sup> ions within the crystal lattice, which is modulated by the Zn doping level. These findings confirm that bulk zinc-doped nickel ferrites synthesized by high–energy ball milling exhibit improved ferromagnetic and dielectric properties, suggesting potential for expanded technological applications.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 14\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14916-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14916-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文系统地研究了晶体结构和阳离子分布对掺杂锌铁氧体Ni1-xZnxFe2O4(0≤x≤1,Δx = 0.1)经高能球磨后热处理合成的多铁性能的影响。x射线衍射(XRD)分析证实,在所有研究成分中都成功合成了立方尖晶石铁氧体,而晶格尺寸、孔隙率和晶粒尺寸等结构变化则表现出组分依赖性。颗粒表面的扫描电镜(SEM)显示了锌含量对颗粒尺寸分布和孔隙率的影响。拉曼光谱分析可以确定阳离子的分布作为Zn含量的函数,揭示了从逆尖晶石结构到混合尖晶石结构的变化。x射线光电子能谱(XPS)可以测定分布在四面体和八面体位置的Ni2+、Ni3+、Fe2+和Fe3+阳离子,从而在样品中产生新的磁和介电相互作用。磁滞回线证实了合成铁氧体的铁磁有序性,在0 ~ 0.5 mol Zn条件下,饱和磁化强度分别为40 ~ 76 emu/g。相对介电常数和电导率随着锌含量的增加而增加,这是由于Fe3+离子在晶格内的重新分布,这是由锌掺杂水平调节的。这些发现证实,通过高能球磨合成的大块锌掺杂镍铁氧体具有更好的铁磁性和介电性能,表明了扩大技术应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning the multiferroic properties of spinel nickel ferrite via zinc doping

This work presents a systematic investigation of the effects of the crystal structure and cation distribution on the multiferroic properties of the zinc-doped ferrite Ni1-xZnxFe2O4 (0 ≤ x ≤ 1, Δx = 0.1) synthesized via high–energy ball milling followed by heat treatment. X-ray diffraction (XRD) analysis confirmed the successful synthesis of cubic spinel ferrite across all the studied compositions, whereas structural changes, such as lattice size, porosity and crystallite size, exhibited compositional dependence. Scanning electron microscopy (SEM) of the pellet surfaces revealed the dependence of the grain size distribution and porosity on the zinc content. Raman spectroscopy analysis allows the determination of the distribution of cations as a function of the Zn content, revealing the change from an inverse to a mixed spinel structure. X-ray photoelectron spectroscopy (XPS) allows the determination of the cations of Ni2+, Ni3+, Fe2+ and Fe3+ distributed in tetrahedral and octahedral sites, resulting in new magnetic and dielectric interactions in the samples. Magnetic hysteresis loops confirmed the ferromagnetic ordering of the synthesized ferrites, with saturation magnetization values ranging from 40 to 76 emu/g for 0 to 0.5 mol of Zn, respectively. The observed increases in relative permittivity and conductivity with increasing zinc content are attributed to the redistribution of Fe3+ ions within the crystal lattice, which is modulated by the Zn doping level. These findings confirm that bulk zinc-doped nickel ferrites synthesized by high–energy ball milling exhibit improved ferromagnetic and dielectric properties, suggesting potential for expanded technological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信