Qiaoling Kang, Mengfei Su, Yana Luo, Ting Wang, Feng Gao, Qingyi Lu
{"title":"原位Ni-Fe合金负载多层生物碳结构的化学发酵多孔化及其优越的析氧反应电催化","authors":"Qiaoling Kang, Mengfei Su, Yana Luo, Ting Wang, Feng Gao, Qingyi Lu","doi":"10.1007/s40820-025-01777-2","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>A groundbreaking chemical fermentation pore-generation mechanism is developed for the first time for creating nanopores within carbon structures to form multilevel porous network based on the optimal balance between gasification and solidification.</p>\n </li>\n <li>\n <p>The Ni–Fe@C<sub>1D@2D</sub> porous network demonstrates an exceptional oxygen evolution reaction electrocatalytic performance, achieving an ultralow overpotential of 165 mV at 10 mA cm<sup>−2</sup> on a non-supported inert electrode and maintaining long-term stability for over 90 h.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01777-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Chemical Fermentation PoreCreation on Multilevel Bio-Carbon Structure with In Situ Ni–Fe Alloy Loading for Superior Oxygen Evolution Reaction Electrocatalysis\",\"authors\":\"Qiaoling Kang, Mengfei Su, Yana Luo, Ting Wang, Feng Gao, Qingyi Lu\",\"doi\":\"10.1007/s40820-025-01777-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>A groundbreaking chemical fermentation pore-generation mechanism is developed for the first time for creating nanopores within carbon structures to form multilevel porous network based on the optimal balance between gasification and solidification.</p>\\n </li>\\n <li>\\n <p>The Ni–Fe@C<sub>1D@2D</sub> porous network demonstrates an exceptional oxygen evolution reaction electrocatalytic performance, achieving an ultralow overpotential of 165 mV at 10 mA cm<sup>−2</sup> on a non-supported inert electrode and maintaining long-term stability for over 90 h.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01777-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01777-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01777-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
首次开发了一种开创性的化学发酵产孔机制,用于在碳结构中产生纳米孔,形成基于气化和凝固之间最佳平衡的多级多孔网络。Ni - Fe@C1D@2D多孔网络表现出优异的析氧反应电催化性能,在无负载惰性电极上实现了10 mA cm - 2下165 mV的超低过电位,并保持了超过90小时的长期稳定性。
Chemical Fermentation PoreCreation on Multilevel Bio-Carbon Structure with In Situ Ni–Fe Alloy Loading for Superior Oxygen Evolution Reaction Electrocatalysis
Highlights
A groundbreaking chemical fermentation pore-generation mechanism is developed for the first time for creating nanopores within carbon structures to form multilevel porous network based on the optimal balance between gasification and solidification.
The Ni–Fe@C1D@2D porous network demonstrates an exceptional oxygen evolution reaction electrocatalytic performance, achieving an ultralow overpotential of 165 mV at 10 mA cm−2 on a non-supported inert electrode and maintaining long-term stability for over 90 h.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.