用于柔性电子和光学器件的ii型SiPGaS/ snc异质结构

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anwar Ali, Bin Lu, Wen Zhang, Ping Kwan Johnny Wong
{"title":"用于柔性电子和光学器件的ii型SiPGaS/ snc异质结构","authors":"Anwar Ali,&nbsp;Bin Lu,&nbsp;Wen Zhang,&nbsp;Ping Kwan Johnny Wong","doi":"10.1007/s00339-025-08608-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we engineered SiPGaS/SnC heterostructures with atomically sharp interfaces, confirming their thermal and dynamical stabilities through first-principles analysis. Depending on the specific stacking configurations, these heterostructures exhibit a type-II band alignment with band gap ranging from 0.73 eV to 1.23 eV and spatially segregated electrons and holes within the SiPGaS and SnC layers. Furthermore, these heterostructures exhibit a substantial potential drop of 10.60–11.68 eV and a robust built-in electric field of 3.07–3.46 eVÅ<sup>−1</sup>, which minimized recombination rate of photoinduced charge carriers and extended lifetimes. Specifically, they could be employed for efficient solar energy harvesting owing to their high absorption coefficient for the ultraviolet and visible light regions. The electron and hole carrier mobilities of these heterostructures are estimated to be within the range of 10<sup>2</sup> cm<sup>2</sup>V<sup>-1</sup>S<sup>-1</sup>. In addition, we demonstrate strongly modulated electronic and optical properties through biaxial strain, achieving an indirect-to-direct band gap transition and an enhanced power conversion efficiency up to 20%. The various marked features hosted by the SiPGaS/SnC-based heterostructures make them suitable for nanoelectronic and optoelectronic devices.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type-II SiPGaS/SnC-based heterostructures for flexible electronic and optical devices\",\"authors\":\"Anwar Ali,&nbsp;Bin Lu,&nbsp;Wen Zhang,&nbsp;Ping Kwan Johnny Wong\",\"doi\":\"10.1007/s00339-025-08608-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we engineered SiPGaS/SnC heterostructures with atomically sharp interfaces, confirming their thermal and dynamical stabilities through first-principles analysis. Depending on the specific stacking configurations, these heterostructures exhibit a type-II band alignment with band gap ranging from 0.73 eV to 1.23 eV and spatially segregated electrons and holes within the SiPGaS and SnC layers. Furthermore, these heterostructures exhibit a substantial potential drop of 10.60–11.68 eV and a robust built-in electric field of 3.07–3.46 eVÅ<sup>−1</sup>, which minimized recombination rate of photoinduced charge carriers and extended lifetimes. Specifically, they could be employed for efficient solar energy harvesting owing to their high absorption coefficient for the ultraviolet and visible light regions. The electron and hole carrier mobilities of these heterostructures are estimated to be within the range of 10<sup>2</sup> cm<sup>2</sup>V<sup>-1</sup>S<sup>-1</sup>. In addition, we demonstrate strongly modulated electronic and optical properties through biaxial strain, achieving an indirect-to-direct band gap transition and an enhanced power conversion efficiency up to 20%. The various marked features hosted by the SiPGaS/SnC-based heterostructures make them suitable for nanoelectronic and optoelectronic devices.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 6\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-025-08608-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08608-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们设计了具有原子尖锐界面的SiPGaS/SnC异质结构,通过第一性原理分析证实了它们的热稳定性和动力学稳定性。根据不同的堆叠结构,这些异质结构呈现出ii型带向,带隙范围在0.73 eV至1.23 eV之间,并且在SiPGaS和SnC层中存在空间分离的电子和空穴。此外,这些异质结构表现出10.60-11.68 eV的大幅电位下降和3.07-3.46 eVÅ−1的强大内置电场,从而最大限度地降低了光诱导载流子的重组率并延长了寿命。具体地说,由于它们对紫外线和可见光区的高吸收系数,它们可以用于有效的太阳能收集。这些异质结构的电子和空穴载流子迁移率估计在102 cm2V-1S-1范围内。此外,我们通过双轴应变证明了强调制的电子和光学特性,实现了间接到直接的带隙转换,并提高了高达20%的功率转换效率。基于SiPGaS/ snc的异质结构所具有的各种显著特征使其适用于纳米电子和光电子器件。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type-II SiPGaS/SnC-based heterostructures for flexible electronic and optical devices

In this study, we engineered SiPGaS/SnC heterostructures with atomically sharp interfaces, confirming their thermal and dynamical stabilities through first-principles analysis. Depending on the specific stacking configurations, these heterostructures exhibit a type-II band alignment with band gap ranging from 0.73 eV to 1.23 eV and spatially segregated electrons and holes within the SiPGaS and SnC layers. Furthermore, these heterostructures exhibit a substantial potential drop of 10.60–11.68 eV and a robust built-in electric field of 3.07–3.46 eVÅ−1, which minimized recombination rate of photoinduced charge carriers and extended lifetimes. Specifically, they could be employed for efficient solar energy harvesting owing to their high absorption coefficient for the ultraviolet and visible light regions. The electron and hole carrier mobilities of these heterostructures are estimated to be within the range of 102 cm2V-1S-1. In addition, we demonstrate strongly modulated electronic and optical properties through biaxial strain, achieving an indirect-to-direct band gap transition and an enhanced power conversion efficiency up to 20%. The various marked features hosted by the SiPGaS/SnC-based heterostructures make them suitable for nanoelectronic and optoelectronic devices.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信